
Gaia Sky Documentation

Antoni Sagristà Sellés

Apr 22, 2024

CONTENTS

1 Contents 3
1.1 Installation and running . 3

1.1.1 System requirements . 4
1.1.2 Download . 4
1.1.3 Installation procedure . 4
1.1.4 Run from source . 6
1.1.5 CLI arguments . 8
1.1.6 Packaging the software . 9

1.2 System Directories . 9
1.2.1 Datasets location . 10
1.2.2 Logs and crash reports . 10

1.3 Quick start guide . 10
1.3.1 Before starting. 11
1.3.2 Welcome window . 11
1.3.3 Dataset manager . 11
1.3.4 Basic controls . 13
1.3.5 The user interface . 16
1.3.6 Camera modes . 20
1.3.7 Special render modes . 20
1.3.8 Type visibility . 21
1.3.9 Visual settings . 24
1.3.10 External datasets . 25
1.3.11 External information . 27
1.3.12 Scripting . 28
1.3.13 Camera paths . 30
1.3.14 Frame output mode . 31
1.3.15 Conclusion . 32

1.4 User manual . 32
1.4.1 Dataset manager . 32
1.4.2 Controls . 36
1.4.3 User interface . 47
1.4.4 Camera settings . 62
1.4.5 Search objects . 65
1.4.6 Camera info panel . 66
1.4.7 Object visiblity . 70
1.4.8 Datasets . 70
1.4.9 Bookmarks . 85
1.4.10 Location log . 89
1.4.11 System information . 89
1.4.12 Camera paths . 91

i

1.4.13 Settings and configuration . 98
1.4.14 Scripting . 110
1.4.15 Frames and screenshots . 121
1.4.16 Stereoscopic (3D) mode . 122
1.4.17 Planetarium mode . 124
1.4.18 Panorama mode . 129
1.4.19 Orthosphere view mode . 131
1.4.20 Eclipse representation . 132
1.4.21 Bounding shapes . 132
1.4.22 External views . 134
1.4.23 Connecting Gaia Sky instances . 134
1.4.24 REST API . 137
1.4.25 Capturing videos . 140
1.4.26 SAMP integration . 141
1.4.27 Procedural planetary surfaces . 142
1.4.28 System logs . 150

1.5 Advanced topics . 151
1.5.1 The configuration file . 151
1.5.2 Proxy configuration . 153
1.5.3 Performance . 156
1.5.4 Graphics performance . 159
1.5.5 Internal reference system . 164
1.5.6 Data format . 166
1.5.7 STIL data loader . 189
1.5.8 Star catalog formats . 191
1.5.9 Particle catalog formats . 197
1.5.10 Archetypes . 198
1.5.11 Components . 204
1.5.12 Star rendering . 220
1.5.13 Defining an extrasolar system . 221
1.5.14 Cubemaps . 234
1.5.15 Virtual Textures . 235
1.5.16 Mesh warping . 239

1.6 Gaia Sky VR . 239
1.6.1 System requirements . 240
1.6.2 Set-up . 240
1.6.3 Downloading datasets . 241
1.6.4 Controls . 241
1.6.5 Caveats . 241
1.6.6 Common problems . 241

1.7 Additional resources . 241
1.7.1 Video tutorials . 243
1.7.2 Presentations . 243
1.7.3 Workshop notes . 243

1.8 Frequently Asked Questions . 260
1.8.1 Q: What is the base-data package? . 260
1.8.2 Q: Why do you have two different download pages? . 260
1.8.3 Q: Why so many Gaia-DR catalogs? . 260
1.8.4 Q: Gaia Sky crashes at start-up, what to do? . 260
1.8.5 Q: I’m running out of memory, what to do? . 261
1.8.6 Q: I can’t see the elevation data on Earth or other planets! 261
1.8.7 Q: What is the internal reference system used in Gaia Sky? 261
1.8.8 Q: Can I contribute? . 261
1.8.9 Q: I like Gaia Sky so much, can I donate to contribute to the project? 261

ii

1.9 Changelog . 262
1.10 About . 262

1.10.1 Contact . 262
1.10.2 Author . 262
1.10.3 Acknowledgements . 262
1.10.4 Stats . 262

iii

iv

Gaia Sky Documentation

These are the official documentation pages of Gaia Sky. Find below the contents table to navigate around.

• Visit our home page

• Download Gaia Sky

• Submit a bug or a feature request

You can find a PDF version of this documentation here.

Gaia Sky is (partially) described in the paper Gaia Sky: Navigating the Gaia Catalog.

CONTENTS 1

https://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky/
https://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/
https://codeberg.org/gaiasky/gaiasky/issues
https://gaia.ari.uni-heidelberg.de/gaiasky/docs-pdf/
http://dx.doi.org/10.1109/TVCG.2018.2864508

Gaia Sky Documentation

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation and running

In the sections below is the information on the minimum hardware requirements and on how to install the software.

Contents

• Installation and running

– System requirements

– Download

– Installation procedure

∗ Linux

· Flatpak

· AppImage

· Unix installer

· DEB package

· RPM package

· AUR package

∗ Windows

∗ macOS

∗ TAR.GZ

– Run from source

∗ Requirements

∗ Getting the catalog data

∗ Compiling and running

– CLI arguments

– Packaging the software

3

Gaia Sky Documentation

1.1.1 System requirements

Here are the minimum requirements to run this software:

Operating system Linux / Windows 7+ / macOS, x86_64 (ARM CPUs unsupported)
CPU Intel Core i5 3rd Gen. 4+ cores recommended
GPU Support for OpenGL 3.3 (4.x recommended), 1 GB VRAM
Memory 2-6 GB RAM (depends on loaded datasets)
Hard drive 1 GB of free disk space (depends on downloaded datasets)

1.1.2 Download

Gaia Sky packages are available for Linux, macOS and Windows. You can either download the Gaia Sky build for
your operating system (recommended) or browse and build the source code.

• Gaia Sky downloads page

1.1.3 Installation procedure

Depending on your system and your personal preferences the installation procedure may vary. This section describes
the installation and running process for the different operating systems and packages.

Linux

We provide 4 distro-agnostic packages:

• Flatpak.

• AppImage.

• Unix installer.

• TAR.GZ package.

We also offer 3 distro-specific packages:

• DEB – Debian and derivatives.

• RPM – RedHat and derivatives.

• AUR – Arch Linux and derivatives.

Flatpak

Install the Flatpak package with the following:

flatpak install flathub de.uni_heidelberg.zah.GaiaSky

Then, run with:

flatpak run de.uni_heidelberg.zah.GaiaSky

4 Chapter 1. Contents

https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads
https://codeberg.org/gaiasky/gaiasky
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/
https://flathub.org/apps/de.uni_heidelberg.zah.GaiaSky

Gaia Sky Documentation

AppImage

The AppImage does not need installation. Download the package, give it execute permissions if necessary, and run it.

wget https://gaia.ari.uni-heidelberg.de/gaiasky/releases/latest/gaiasky_$VERSION_x86_64.
→˓appimage
chmod +x gaiasky_$VERSION_x86_64.appimage
./gaiasky_$VERSION_x86_64.appimage

Unix installer

Download the package, give it execute permissions and run it to start the installation process. Then follow the on-screen
instructions:

chmod +x gaiasky_linux_$VERSION.sh
./gaiasky_linux_$VERSION.sh

Once installed, you can simply run the gaiasky command, or use your favourite launcher to find and run it.

DEB package

This is the package for Debian-based distros (Debian, Ubuntu, Mint, etc.). Download the gaiasky_$VERSION.deb
file and run the following command. You need root privileges to install a DEB package in your system.

dpkg -i gaiasky_$VERSION.deb

This installs the application in the /opt/gaiasky/ folder and creates the necessary shortcuts and .desktop files.

Once installed, you can simply run the gaiasky command, or use your favourite launcher to find and run it.

In order to uninstall, just type:

apt remove gaiasky

RPM package

This is the package for RPM-based distributions (Red Hat, Fedora, Mandriva, SUSE, CentOS, etc.) Download the
gaiasky_linux_$VERSION.rpm file and run the following command. You need root privileges to install an RPM
package in your system.

rpm --install gaiasky_linux_$VERSION.rpm

This installs the application in the /opt/gaiasky/ folder and creates the necessary shortcuts.

Once installed, you can simply run the gaiasky command, or use your favourite launcher to find and run it.

In order to uninstall, just type:

yum remove gaiasky-x86

1.1. Installation and running 5

https://appimage.org
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/

Gaia Sky Documentation

AUR package

We also offer an Arch User Repository (AUR) package for Arch Linux and derivatives. Install one of gaiasky, gaiasky-
git or gaiasky-appimage. For example, if you use paru:

paru -S gaiasky

Once installed, you can simply run the gaiasky command, or use your favourite launcher to find and run it.

Windows

We offer a Windows installer for 64-bit systems, gaiasky_windows-x64_$VERSION.exe.

To install the Gaia Sky, just double click on the installer and then follow the on-screen instructions. You need to choose
the directory where the application is to be installed.

In windows, this means clicking on Start and then browsing the start menu folder Gaia Sky. You can run the
executable(s) for Gaia Sky and Gaia Sky VR from there. You can also navigate to the installation folder and run the
gaiasky.cmd file from a command prompt or PowerShell.

In order to uninstall the application you can use the Windows Control Panel or you can use the provided uninstaller in
the Gaia Sky folder.

macOS

For macOS we provide a gaiasky_macos_$VERSION.dmg file. To install, double-click on it to mount it and then
drag-and-drop the Gaia Sky.app application to your /Applications directory in Finder. Once copied, it is safe to
unmount the dmg volume.

To run it, double click on the Gaia Sky.app launcher in your applications directory.

Our dmg package is not signed by Apple, so it will be detected as coming from an ‘unidentified developer’. You can
still install it by following the procedure described in this page.

TAR.GZ

Download the package, and extract it wherever. Then, use either the gaiasky or gaiasky.cmd script to start the
program. On a Unix system, do:

tar -xzvf gaiasky-$VERSION.tar.gz -C target/directory/
cd target/directory/gaiasky-$VERSION
./gaiasky

1.1.4 Run from source

Requirements

If you want to compile the source code, you need the following:

• Java Development Kit (JDK, version 17 or above should suffice, we recommend using the latest LTS available).

• Git.

6 Chapter 1. Contents

https://aur.archlinux.org/packages/gaiasky/
https://aur.archlinux.org/packages/gaiasky-git/
https://aur.archlinux.org/packages/gaiasky-git/
https://aur.archlinux.org/packages/gaiasky-appimage/
https://github.com/Morganamilo/paru
https://support.apple.com/guide/mac-help/open-a-mac-app-from-an-unidentified-developer-mh40616/mac
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky/downloads/
https://git-scm.com

Gaia Sky Documentation

Please, be aware that only tags are guaranteed to work (here). The master branch holds the development version and
the configuration files are possibly messed up and not ready to work out-of-the-box. So remember to use a tag version
if you want to run it right away from source.

First, clone the repository:

git clone https://codeberg.org/gaiasky/gaiasky.git

Getting the catalog data

Hint: As of version 2.1.0, Gaia Sky provides a self-contained download manager to get all the data packs available.

The Base data pack (key: default-data) is necessary for Gaia Sky to run, and contains the Solar System, the Milky
Way model, etc. Catalog files are optional but recommended if you want to see any stars at all. You can bring up the
download manager at any time by clicking on the button :guilabel:Dataset manager in the data tab of the preferences
window. More information on the download manager can be found in Dataset manager.

You can also download the data packs manually here.

Compiling and running

To compile the code and run Gaia Sky run the following.

./gradlew core:run

If you want to pass CLI arguments via gradle, just use the gradle --args argument (gradlew core:run
--args='-vr').

Tip: Gaia Sky checks that your Java version is compatible with it when you run the build. Skip this check by setting
the GS_JAVA_VERSION_CHECK environment variable to false in the context of gradle:

export GS_JAVA_VERSION_CHECK=false

In order to pull the latest changes from the remote git repository:

git pull

On Windows, you need to open the Command Prompt or PowerShell and run:

.\gradlew.bat core:run

1.1. Installation and running 7

https://codeberg.org/gaiasky/gaiasky/tags
https://gaia.ari.uni-heidelberg.de/gaiasky/repository

Gaia Sky Documentation

1.1.5 CLI arguments

Gaia Sky offers a few command line arguments. Run gaiasky -h for more information.

gaiasky -h

Usage: gaiasky [options]
Options:
-h, --help
Show program options and usage information.

-v, --version
List Gaia Sky version and relevant information.
Default: false

-i, --asciiart
Add nice ascii art to --version information.
Default: false

-s, --skip-welcome
Skip the welcome screen if possible (base-data package must be present).
Default: false

-p, --properties
Specify the location of the properties file.

-a, --assets
Specify the location of the assets folder. If not present, the default
assets location (in the installation folder) is used.

-vr, --openvr
Launch in Virtual Reality mode. Gaia Sky will attempt to create a VR
context through OpenVR.
Default: false

-e, --externalview
Create a window with a view of the scene and no UI.
Default: false

-n, --noscript
Do not start the scripting server. Useful to run more than one Gaia Sky
instance at once in the same machine.
Default: false

-d, --debug
Launch in debug mode. Prints out debug information from Gaia Sky to the
logs.
Default: false

-g, --gpudebug
Activate OpenGL debug mode. Prints out debug information from OpenGL to
the standard output.
Default: false

-l, --headless
Use headless (windowless) mode, for servers.
Default: false

--safemode
Activate safe graphics mode. This forces the creation of an OpenGL 3.2
context, and disables float buffers and tessellation.
Default: false

--nosafemode
Force deactivation of safe graphics mode. Warning: this bypasses
internal checks and may break things! Useful to get rid of safe graphics

(continues on next page)

8 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

mode in the settings.
Default: false

--hdpimode
The HDPI mode to use. Defines how HiDPI monitors are handled. Operating
systems may have a per-monitor HiDPI scale setting. The operating system
may report window width/height and mouse coordinates in a logical
coordinate system at a lower resolution than the actual physical
resolution. This setting allows you to specify whether you want to work
in logical or raw pixel units.
Default: Pixels
Possible Values: [Logical, Pixels]

1.1.6 Packaging the software

Gaia Sky can be exported to be run as a standalone app. Right now, doing so is only supported from Linux. You need
the utility help2man in your path to generate the man pages. Remember to restart the gradle daemon after installing
it. Then run:

gradlew core:dist

This creates a new directory releases/gaiasky-$VERSION with the exported application. Run scripts are provided
with the name gaiasky (Linux, macOS) and gaiasky.cmd (Windows).

Also, to export Gaia Sky into a tar.gz archive file, run the following:

gradlew core:createTar

In order to produce the desktop installers for the various systems you need a licensed version of Install4j. Additionally,
you need a certificate for signing the Windows packages in $GS/assets/cert/cert.pfx. Then, just run:

gradlew core:pack -PwinKeystorePassword=$PASSWORD

Where $PASSWORD is the password of the certificate. This command produces the different OS packages (EXE,
DMG, DEB, RPM, etc.) of Gaia Sky and stores them in the releases/packages-$VERSION directory.

1.2 System Directories

In this documentation we refer to a few different directories that Gaia Sky uses to store data and configuration settings:
$GS_DATA, $GS_CONFIG, and $GS_CACHE.

• $GS_DATA — contains some essential files and directories for Gaia Sky to run properly. For example:

– $GS_DATA/camera — storage point for camera path and keyframe files.

– $GS_DATA/frames — default save location for the frame output mode.

– $GS_DATA/screenshots — default save location for screenshots.

– $GS_DATA/crashreports — whenever Gaia Sky crashes, a crash report is stored at this location.

– $GS_DATA/log — contains the full Gaia Sky log of the last session. Only the last session’s log is kept.

– $GS_DATA/data — also referred to as simply $data, this is the default dataset save location. All datasets
are stored in this location by default (can be changed from the dataset manager).

1.2. System Directories 9

Gaia Sky Documentation

• $GS_CONFIG — contains the configuration files, the bookmarks, and the keyboard mappings file.

• $GS_CACHE — contains cached files, like Wikipedia images.

The locations of $GS_DATA, $GS_CONFIG and $GS_CACHE depend on the operating system:

• Linux — as of Gaia Sky 2.2.0, the Linux release of Gaia Sky uses the XDG base directory specification.

– $GS_DATA = ~/.local/share/gaiasky/

– $GS_CONFIG = ~/.config/gaiasky/

– $GS_CACHE = ~/.cache/gaiasky/

• Windows and macOS — the .gaiasky directory in the user home directory for both locations, so:

– $GS_DATA = $GS_CONFIG = [User.Home]/.gaiasky/

– [User.Home] on Windows is typically in C:\Users\[username].

– [User.Home] on macOS is typically in /Users/[username].

– $GS_CONFIG = $GS_DATA

– $GS_CACHE = $GS_DATA/cache

1.2.1 Datasets location

By default, Gaia Sky stores the downloaded datasets in the $GS_DATA/data directory. The location where the datasets
are saved is referred to as $data. The actual location of $data is stored in the configuration file (key data::location)
and can be changed in the dataset manager window at startup.

• $data = $GS_DATA/data

1.2.2 Logs and crash reports

For every Gaia Sky session a system log is stored in the directory $GS_DATA/log. Logs are overwritten with each new
session, so only the last log is effectively available at any given time.

• $GS_DATA/log/gaiasky_log_lastsession.txt — full log of the last Gaia Sky session.

Crash reports are stored in $GS_DATA/crashreports whenever Gaia Sky crashes. If that happens, please, create
a new issue in https://codeberg.org/gaiasky/gaiasky/issues, and attach the crash report. Additionally, also attach the
session log.

• $GS_DATA/crashreports/gaiasky_crash_[$DATE].txt — crash reports.

1.3 Quick start guide

Tip: This guide is designed to be followed with the latest version of Gaia Sky!

The main aim of this quick start guide is to provide a concise on-ramp to the Gaia Sky platform by describing its
operation and most common features.

Gaia Sky crash course: see this companion web presentation for a visual introduction to Gaia Sky.

The topics covered in this guide are the following:

• Gaia Sky introduction:

10 Chapter 1. Contents

https://specifications.freedesktop.org/basedir-spec/latest/
https://codeberg.org/gaiasky/gaiasky/issues
https://gaia.ari.uni-heidelberg.de/gaiasky/presentation/gaiasky-crash-course/

Gaia Sky Documentation

– Dataset manager.

– Controls, movement, selection.

– User interface.

– Camera operation and modes.

– Render modes (3D, planetarium, 360, re-projection).

– Object and type visibility.

– Visual settings.

– External datasets (loading, filters, SAMP).

• Scripting:

– Scripting basics.

– The API .

– Showcase scripts.

– Hands-on session.

• Camera paths:

– Recording and playback.

– Keyframes system.

• Still frame output mode.

– Video from still frames with ffmpeg.

1.3.1 Before starting. . .

In order to follow this guide it is strongly recommended to have a local installation of Gaia Sky. To install Gaia Sky,

follow the instructions for your operating system in the installation section.

1.3.2 Welcome window

When we start up Gaia Sky, we are greeted with this view:

From here, we have access to the global preferences (, bottom-right), the help window (, bottom-right), fire

up the Dataset manager, or Start Gaia Sky.

1.3.3 Dataset manager

The Dataset manager is used to download, update, delete and enable/disable datasets. It consists of two tabs:

• Available for download – contains datasets that are available to be downloaded and installed.

• Installed – contains the datasets currently available locally.

1.3. Quick start guide 11

Gaia Sky Documentation

Fig. 1: The welcome screen in Gaia Sky contains buttons to start the program, open the dataset manager, access the
settings and more.

The datasets are downloaded directly from our servers over an encrypted HTTPS connection, and SHA256 checksums
are used to verify the integrity of downloaded files.

The first time we start Gaia Sky we need to download at least the Base data pack (dataset key: default-data) to be
able to start the program. This is a REQUIRED step. The base data pack contains essential data like most of the Solar
System (planets, moons, orbits, asteroids, etc.), the Milky Way, grids, constellations and other important objects.

We may download any dataset in the Available for download tab by clicking on the icon .

Feel free to explore the available datasets.

The Installed tab shows the datasets that we have already downloaded and are available locally.

• Enable/disable a dataset using the checkbox in the dataset pane. Enabled datasets are loaded when Gaia Sky
starts.

• Remove a dataset by right clicking with your mouse on it and selecting Remove.

Now, close the dataset manager and Start Gaia Sky.

12 Chapter 1. Contents

_images/welcome-screen.jpg

Gaia Sky Documentation

Fig. 2: The dataset manager with the base data pack selected.

1.3.4 Basic controls

When Gaia Sky is ready to go, we are presented with this screen:

In it, we can see a few things already:

• To the bottom-right, the camera info panel tells us that we are in focus mode, meaning that all our movement is
relative to the focus object. The default focus of Gaia Sky is the Earth.

• To the top, the quick info bar tells us that our focus is the Earth, and that the closest object to our location is also
the Earth. Additionally, we see that our home object is, again, the Earth.

• Anchored to the top-left, we see some buttons that give access to the control panes. If we click on one of these
buttons, the respective pane opens. We will use them later.

Movement

But right now let’s try some movement. In focus mode the camera orbits around the focus object, always pointing in
the direction of the focus. Try clicking and dragging with your left mouse button. The camera should orbit around
the Earth showing parts of the surface which were previously hidden. You may notice that the whole scene rotates.
Now try scrolling with your mouse wheel. The camera moves either farther away from (scroll down) or closer to
(scroll up) the Earth. We can always press and hold z to speed-up the camera considerably. This is useful to traverse
long distances quickly.

Now, if we click and drag with your right mouse button, you can offset the focus object from the center, but your
movement will still be relative to it.

You can also use your keyboard arrows ← ↑ → ↓ to orbit left or right around the focus object, or move closer to or
away from it.

You can use shift with a mouse drag in order to roll the camera.

1.3. Quick start guide 13

_images/202402_dataset-manager.jpg

Gaia Sky Documentation

Fig. 3: Enable and disable datasets from the Installed tab.

14 Chapter 1. Contents

_images/catalog-selection.jpg

Gaia Sky Documentation

Fig. 4: Gaia Sky starts focussed on the Earth.

Docs
See the controls section of the user manual for more.

Selection

You can change the focus by simply double clicking on any object on the scene. You can also press f to bring up the
search dialog where you can look up objects by name. Try it now. Press f and type in “mars”, without the quotes,
and hit esc. You should see that the camera now points in the direction of Mars. To actually go to Mars simply scroll

up until you reach it, or click on the icon next to the name in the focus info panel. If you do so, Gaia Sky takes
control of the camera and brings you to Mars.

If you want to move instantly to your current focus object, hit ctrl + g.

Any time, we can use the Home key to return back to Earth (in fact, we return to the home object, which is defined in
the configuration file).

1.3. Quick start guide 15

_images/202402_ui-initial.jpg

Gaia Sky Documentation

1.3.5 The user interface

The user interface of Gaia Sky consists of a few panes, buttons and windows. The most important of those are the
control panes, accessible via a series of buttons anchored to the top-left.

Fig. 5: Gaia Sky user interface with the most useful functions

Docs
See the user interface section of the user manual for more information.

Control panes

The control panes (previously called control panel in the old UI—it can still be used but is off by default) are made up
of seven different panes:

• Time – shortcut: t.

• Camera – shortcut: c.

• Type visibility – shortcut: v.

• Visual settings – shortcut: l.

• Datasets – shortcut: d.

• Location log.

• Bookmarks – shortcut: b.

16 Chapter 1. Contents

_images/202402_ui-all.jpg

Gaia Sky Documentation

Each pane can be expanded and collapsed by clicking on the button or by using the respective keyboard shortcut (listed
in the button tooltip).

Anchored to the bottom-left of the screen we can find six buttons to perform a few special actions:

• Toggle the mini-map – shortcut: Tab.

• Load a dataset – shortcut: Ctrl + o.

• Open the preferences window – shortcut: p.

• Show the session log – shortcut: Alt + l.

• Show the help dialog – shortcut: h or F1.

• Exit Gaia Sky – shortcut: Esc.

Camera info panel

The camera info panel, also known as focus info pane, is anchored to the bottom-right of the main window.

Docs
See the camera info panel section of the user manual.

Quick info bar

To the top of the screen, we can see the quick info bar which provides information on the current time, the current
focus object (if any), the current closest object to our location and the current home object. The colors of these objects
(green, blue, orange) correspond to the colors of the crosshairs. The crosshairs can be enabled or disabled from the
interface tab in the preferences window (use p to bring it up).

Docs
See the quick info bar section for more information.

System info panel

Gaia Sky has a built-in system information panel that provides system information and is hidden by default. We can

bring it up with ctrl + d, or by ticking the Show debug info” check box in the System tab of the preferences window.
By default, the debug panel is collapsed.

Expand the system info panel with the + symbol to get additional information.

The debug panel shows information on the current graphics device, system and graphics memory, the amount of objects
loaded and on display, the octree (if a LOD dataset is in use) or the SAMP status.

1.3. Quick start guide 17

Gaia Sky Documentation

Fig. 6: The camera info pane when the camera is in focus mode. In this state, it is also referred to as focus info pane,
and it displays information on the focus (top), the mouse pointer (middle), and the camera position and state (bottom).

Fig. 7: The quick info bar is anchored to the top of the window and displays useful information at a glance.

Fig. 8: Collapsed system info panel

18 Chapter 1. Contents

_images/camera-info-pane-focusmode.jpg
_images/quick-info-bar.jpg
_images/debug-collapsed.jpg

Gaia Sky Documentation

Fig. 9: Expanded system info panel

Additional debug information can be obtained in the system tab of the help dialog (? or h).

Docs
See the system info panel section for a full description.

Time controls

Tip: Open the time pane by clicking on the clock button, or by pressing t.

Gaia Sky can simulate time. Play and pause the simulation using the / Play/Pause buttons in the time pane, or
toggle using Space.

The Time warp slider lets us modify the speed at which the simulation time runs w.r.t. real time. Use , or and . or

to divide by 2 and double the value of the time warp respectively. If we keep either . or , pressed, the warp factor
will increase or decrease steadily.

Use the Reset time and warp button to reset the time warp to x1, and set the time to the current real world time (UTC).

Now, go ahead and press Home. This will bring us back to Earth. Now, start the time with or Space and drag the
slider slightly to the right to increase its speed. We see that the Earth rotates faster and faster as we move the slider
to the right. Now, drag it to the left until time is reversed and the Earth starts rotating in the opposite direction. Now
time is going backwards!

1.3. Quick start guide 19

_images/debug-expanded.jpg

Gaia Sky Documentation

Fig. 10: The time pane in the controls window of Gaia Sky.

If we set the time warp high enough we will notice that as the bodies in the Solar System start going crazy, the stars
start to slightly move. That’s right: Gaia Sky also simulates proper motions.

1.3.6 Camera modes

We have already talked about the focus camera mode, but Gaia Sky provides some more camera modes:

• 0 - Free mode: the camera is not locked to a focus object and can roam freely. The movement is achieved with
the scroll wheel of the mouse, and the view is controlled by clicking and draggin the left and right mouse buttons

• 1 - Focus mode: the camera is locked to a focus object and its movement depends on it

• 2 - Game mode: similar to free mode but the camera is moved with wasd and the view (pitch and yaw) is
controlled with the mouse. This control system is commonly found in FPS (First-Person Shooter) games on PC

• 3 - Spacecraft mode: take control of a spacecraft (outside the scope of this tutorial)

The most interesting mode is free mode which lets us roam freely. Go ahead and press 0 to try it out. The controls are
a little different from those of focus mode, but they should not be to hard to get used too. Basically, use the left mouse
button to yaw and pitch the view, use shift to roll, and use the right mouse button to pan.

Docs
See the camera modes section of the user manual.

1.3.7 Special render modes

There are three special render modes: 3D mode, planetarium mode, panorama mode and orthosphere view. We
can access these modes using the buttons at the bottom of the camera pane or the following shortcuts:

• or ctrl + s - 3D mode

• or ctrl + p - Planetarium mode

20 Chapter 1. Contents

_images/pane-time.jpg

Gaia Sky Documentation

• or ctrl + k - Panorama mode

• or ctrl + j - Orthosphere view

Docs
See the stereoscopic mode, the planetarium mode, the panorama mode, and the orthosphere view sections of the user
manual.

1.3.8 Type visibility

Tip: Expand and collapse the visibility pane by clicking on the eye button or with v.

The visibility pane offers controls to hide and show object types. Object types are groups of objects that are of the
same category, like stars, planets, labels, galaxies, grids, etc. The pane also contains a button at the bottom that gives

access to the per-object visibility window, which enables visibility control for individual objects.

Fig. 11: The visibility pane contains controls to hide and show types of objects.

For example, we can hide the stars by clicking on the stars button. The object types available are the following:

• – Stars

• – Planets

1.3. Quick start guide 21

_images/pane-visibility.jpg

Gaia Sky Documentation

• – Moons

• – Satellites

• – Asteroids

• – Star clusters

• – Milky Way

• – Galaxies

• – Nebulae

• – Meshes

• – Equatorial grid

• – Ecliptic grid

• – Galactic grid

• – Labels

• – Titles

• – Orbits

• – Locations

• – Cosmic locations

• – Countries

• – Constellations

• – Constellation boundaries

• – Rulers

• – Particle effects

• – Atmospheres

22 Chapter 1. Contents

Gaia Sky Documentation

• – Clouds

• – Axes

• – Velocity vectors

• – Others

Velocity vectors

One of the elements, the velocity vectors, enable a few properties when selected.

• Number factor – control how many velocity vectors are rendered. The stars are sorted by magnitude (ascending)
so the brightest stars will get velocity vectors first

• Length factor – length factor to scale the velocity vectors

• Color mode – choose the color scheme for the velocity vectors

• Show arrowheads – Whether to show the vectors with arrow caps or not

Tip: Control the width of the velocity vectors with the line width slider in the visual settings pane.

Fig. 12: Velocity vectors in Gaia Sky

Docs
See the velocity vectors section of the user manual.

1.3. Quick start guide 23

_images/velocity-vectors.jpg

Gaia Sky Documentation

1.3.9 Visual settings

Tip: Expand and collapse the visual settings pane by clicking on the bolt button or with l.

The visual settings pane contains a few options to control the shading of stars and other elements:

• Star brightness – control the brightness of stars.

• Magnitude multiplier – exponent of power function that controls the brightness of stars. Controls the brightness
difference between bright and faint stars.

• Star glow factor – close-by star size.

• Point size – size of point-like stars and other objects.

• Base star level – the minimum brightness level for all stars.

• Ambient light – control the amount of ambient light. This only affects the models such as the planets or satellites.

• Line width – control the width of all lines in Gaia Sky (orbits, velocity vectors, etc.).

• Label size – control the size of the labels.

• Elevation multiplier – scale the height representation for planets with elevation maps.

Fig. 13: The visual settings pane.

24 Chapter 1. Contents

_images/pane-visual-settings.jpg

Gaia Sky Documentation

1.3.10 External datasets

We can also load datasets into Gaia Sky at run time. Right now, the VOTable, CSV and FITS formats are supported.
Gaia Sky needs some metadata in the form of UCDs or column names in order to parse the dataset columns correctly.

Docs
See to the STIL data loader section of the Gaia Sky user manual for more information on how to prepare your datasets
for Gaia Sky.

The datasets loaded in Gaia Sky at a certain moment can be found in the datasets pane of the control panel. Open it

by clicking on the button or by pressing d.

Fig. 14: Datasets pane of Gaia Sky.

There are four main ways to load new datasets into Gaia Sky:

• Directly from the UI, using the button (anchored to the bottom-left) or pressing ctrl + o.

• Through SAMP, via a connection to another astronomy software package such as Topcat or Aladin.

• Via a script, using one of the dataset loading API calls.

• Creating a dataset in the Gaia Sky format so that it appears in the dataset manager (see here.

Docs
See the data format section to know how to create a Gaia Sky dataset (advanced!).

1.3. Quick start guide 25

_images/gs-datasets-pane.jpg
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#loadDataset(java.lang.String,java.lang.String)

Gaia Sky Documentation

Loading a dataset from the UI – Go ahead and remove the current star catalog by clicking on the icon in the

datasets pane. Now, download a raw Hipparcos dataset VOTable, click on the icon (or press ctrl + o) and select
the file. In the next dialog just click Ok to start loading the catalog. In a few moments the Hipparcos new reduction
dataset should be loaded into Gaia Sky.

Loading a dataset via SAMP – This section presupposes that Topcat is installed on the machine and that the user
knows how to use it to connect to the VO to get some data. The following video demonstrates how to do this (Odysee
mirror, YouTube mirror):

Fig. 15: Loading a dataset from Topcat through SAMP (click for video)

Loading a dataset via scripting – Wait for the scripting section of this course.

Preparing a descriptor file – Not addressed in this tutorial. See the catalog formats section for more information.

Working with datasets

Tip: Expand and collapse the datasets pane by clicking on the hard disk button or with d.

All datasets loaded are displayed in the datasets pane in the control panel. A few useful tips for working with datasets:

• The visibility of individual datasets can be switched on and off by clicking on the button

• Remove datasets with the button

• We can highlight a dataset by clicking on the button. The highlight color is defined by the color selector
right on top of it. Additionally, we can map an attribute to the highlight color using a color map. Let’s try it out:

1. Click on the color box in the Hipparcos dataset we have just loaded from Topcat via SAMP

2. Select the radio button “Color map”

3. Select the rainbow color map

26 Chapter 1. Contents

https://gaia.ari.uni-heidelberg.de/gaiasky/files/catalogs/hip/hipparcos.vot
https://odysee.com/@GaiaSky:8/gaia-sky-loading-data-with-topcat:9
https://odysee.com/@GaiaSky:8/gaia-sky-loading-data-with-topcat:9
https://youtu.be/sc0q-VbeoPE
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/tap-load-topcat.mkv

Gaia Sky Documentation

4. Choose the attribute. In this case, we will use the number of transits, ntr

5. Click Ok

6. Click on the highlight dataset icon to apply the color map

• We can define basic filters on the objects of the dataset using their attributes from the dataset preferences window

. For example, we can filter out all stars with 𝛿 > 50∘:

1. Click on the dataset preferences button

2. Click on Add filter

3. Select your attribute (declination 𝛿)

4. Select your comparator (<)

5. Enter your value, in this case 50

6. Click Ok

7. The stars with a declination greater than 50 degrees should be filtered out

Multiple filters can be combined with the AND and OR operators

1.3.11 External information

Gaia Sky offers three ways to display external information on the current focus object: Wikipedia, Gaia archive and
Simbad.

Fig. 16: Wikipedia, Gaia archive and Simbad connections

• The +Info button opens a view that contains the local data on the object, and a preview of the Wikipedia article
on this object, if it exists.

1.3. Quick start guide 27

_images/external-info.jpg

Gaia Sky Documentation

• When the Archive button appears in the focus info pane, it means that the full table information of selected star
can be pulled from the Gaia archive.

• When the Simbad link appears in the focus info pane, it means that the objects has been found on Simbad, and
we can click the link to open it in the web browser.

1.3.12 Scripting

Gaia Sky exposes an API that is accessible through Python (via Py4j) or through HTTP over a network (using the REST
API HTTP server).

In this tutorial, we focus on the writing of Python scripts that tap into the Gaia Sky API. You will need Python 3
installed, along with the packages NumPy and Py4j.

To install the packages, run this in a terminal:

pip3 install --user numpy py4j

Once you have those installed, you can run a script with the system Python 3 interpreter. Of course, you need to launch
Gaia Sky in the same computer for the connection to succeed. Right now, only local scripting is supported. If you need
to operate Gaia Sky over the network, have a look at the REST API section.

To run a script named my-gaiasky-script.py, run this in a terminal:

python3 my-gaiasky-script.py

If everything works well, the connection should succeed and Gaia Sky should react accordingly.

But wait, we don’t have a script to run yet! Do not fret, in the next section we learn the basics of writing a script for
Gaia Sky.

Docs
See the scripting section in the user manual.

A basic script

Writing a basic script is quite simple. Essentially, you need a header that imports Py4j and creates the connection
object. Then, you can start using the connection object to run calls.

The following script simply connects to Gaia Sky and prints “Hello from a script!” to both Python and the Gaia Sky
log.

from py4j.clientserver import ClientServer, JavaParameters

gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True))
gs = gateway.entry_point

User code goes here.
We use the 'gs' object to access the API.

Let's print something.
message = "Hello from a script!"
Print to Gaia Sky.

(continues on next page)

28 Chapter 1. Contents

https://python.org

Gaia Sky Documentation

(continued from previous page)

gs.print(message)
Print with Python.
print(message)

Shutdown the gateway at the end.
gateway.shutdown()

Note that you need to shutdown the gateway at the end, this is important to clean things up and be able to run more
scripts afterwards!

It is cool that we can print messages, but what other actions can we perform via scripting? Read on to know more about
the API.

Gaia Sky API

The Gaia Sky API (here) contains many more calls to interact with the platform in real time from Python scripts or a
REST HTTP server. The API includes calls to:

• Add and remove messages and images to the interface,

• start and stop time, and change the time warp,

• add scene elements like shapes, lines, etc.,

• load full datasets in VOTable, CSV, FITS, or the internal JSON format,

• manage datasets (highlight, change settings, etc.),

• manipulate the camera position, orientation and mode,

• move the camera by simulating mouse actions (rotate around, forward, etc.),

• activate special modes like planetarium or panorama,

• create smooth camera transitions in position and orientation,

• change the various settings and preferences,

• back-up and restore the full configuration state,

• take screenshots, use the frame output mode.

The API specification is documented in the links below:

• Latest API version

• Older API versions (javadoc).

Showcase scripts

The Gaia Sky repository contains many test and showcase scripts that may help with getting up to speed with Gaia Sky
scripting. Many of them contain comments explaining what is going on:

• Interesting showcase scripts can be found here.

• Basic testing scripts can be found here.

1.3. Quick start guide 29

https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/showcases
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/tests

Gaia Sky Documentation

Hands-on session

Here, we have a look at some real world scripts (full file listing), and write our own to later run them on Gaia Sky.

• Scripting presentation (dropbox link).

The proposed scripts are:

• Locating_the_Hyades_tidal_tails.py – a simple sequential script which exemplifies some of the most common
API calls, and can be used to capture a video. The script requires the following data and subtitles files to run
(save them in the same directory as the script):

– Aldebaran.vot

– Hyades_stars.csv

– Hyades_subtitles.srt

– distSDR3_N.csv

• line-objects-update.py – a script showcasing the feature to run scripting code within the Gaia Sky main loop, so
that it runs synchronized with the main loop, every frame. This is used to run update operations every single
frame. In our test script, we create a line between the Earth and the Moon, start the time simulation, and update
the position of the line every frame so that it stays in sync with the scene.

1.3.13 Camera paths

Gaia Sky includes a feature to record and play back camera paths. This comes in handy if we want to showcase a certain
itinerary through a dataset, for example.

Recording a camera path — The system will capture the camera state at every frame and save it into a .gsc (for Gaia

Sky camera) file. We can start a recording by clicking on the icon in the camera pane of the control panel. Once

the recording mode is active, the icon will turn red . Click on it again in order to stop recording and save the camera
file to disk with an auto-generated file name (default location is $GS_DATA/camera (see the folders section in the Gaia
Sky documentation).

Playing a camera path — In order to playback a previously recorded .gsc camera file, click on the icon and
select the desired camera path. The recording will start immediately.

Tip: Mind the FPS! The camera recording system stores the position of the camera for every frame! It is important
that recording and playback are done with the same (stable) frame rate. To set the target recording frame rate, edit the
“Target FPS” field in the camcorder settings of the preferences window. That will make sure the camera path is using
the right frame rate. In order to play back the camera file at the right frame rate, we can edit the “Maximum frame rate”
input in the graphics settings of the preferences window.

Docs
See the camera paths section in the user manual.

30 Chapter 1. Contents

https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/
https://www.dropbox.com/scl/fi/sctuhkvru2x4gawx51for/Gaia-Sky-Scripting-and-Video-Tutorial-DPAC-Plenary_Nice_Stefan_Jordan.pdf?rlkey=g61lgkjiy4yvvqh283k91xp1j&dl=0
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/Locating_the_Hyades_tidal_tails.py
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/Aldebaran.vot
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/Hyades_stars.csv
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/Hyades_subtitles.srt
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/distSDR3_N.csv
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/quickstartguide/line-objects-update.py

Gaia Sky Documentation

Fig. 17: Location of the controls of the camcorder in Gaia Sky

Keyframe system

The camera path system offers an additional way to define camera paths based on keyframes. Essentially, the user
defines the position and orientation of the camera at certain times and the system generates the camera path from these
definitions. Gaia Sky incorporates a whole keyframe definition system which is outside the scope of this tutorial.

As a very short preview, in order to bring up the keyframes window to start defining a camera path, click on the icon

.

Docs
See the keyframes system section in the user manual.

1.3.14 Frame output mode

In order to create high-quality videos, Gaia Sky offers the possibility to export every single still frame to an image file
using the frame output subsystem. The resolution of these still frames can be set independently of the current screen
resolution.

We can start the frame output system by pressing F6. Once active, the system starts saving each still frame to disk
(frame rate goes down, most probably). The save location of the still frame images is, by default, $GS_DATA/frames/
[prefix]_[num].jpg, where [prefix] is an arbitrary string that can be defined in the preferences. The save location,
mode (simple or advanced), and the resolution can also be defined in the preferences.

1.3. Quick start guide 31

_images/202402_camera-paths.jpg

Gaia Sky Documentation

Fig. 18: The configuration screen for the frame output system

Create a video with ffmpeg

Once we have the still frame images, we can convert them to a video using ffmpeg or any other encoding software.
Additional information on how to convert the still frames to a video can be found in the capturing videos section of the
Gaia Sky user manual.

1.3.15 Conclusion

Congratulations! You have reached the end of the quick start guide. You are now a totally legit Gaia Sky master ;)

1.4 User manual

1.4.1 Dataset manager

When you start Gaia Sky, you are met with the welcome screen, which contains some information and buttons to start
Gaia Sky, launch the dataset manager, open the preferences window, open the help window, and exit Gaia Sky.

The dataset manager provides an integrated way of downloading and enabling/disabling datasets. Enabled datasets
are loaded when Gaia Sky starts up. All downloads are performed over a secure, encrypted HTTPS connection, and
data consistency is checked once the download has finished with sha256 checksums.

Contents

• Dataset manager

32 Chapter 1. Contents

_images/2023_frame-output-prefs.jpg

Gaia Sky Documentation

– Welcome screen

– Dataset manager

∗ Data location

∗ Available datasets

∗ Installed datasets

Welcome screen

Fig. 19: The welcome screen in Gaia Sky.

Gaia Sky greets the user with a welcome screen which lets her start Gaia Sky, manage the datasets or exit.

1.4. User manual 33

_images/2023_welcome.jpg

Gaia Sky Documentation

Dataset manager

The dataset manager provides a hassle-free way of downloading, updating and enabling/disabling your datasets.

Data location

All datasets are installed in the data location. Check out the directories section for the defaults. The install location
can be changed by clicking on the button next to Data location, at the bottom of the window. When changing the data
location no data files are actually moved. If you want to migrate your data files to a different location, you must first do
so by hand, and then point Gaia Sky to the new directory.

Available datasets

Fig. 20: The available datasets view in the dataset manager.

At the top of the window you can choose to view the datasets available for download, using the Available for download
tab, and the installed datasets, using the Installed tab.

Each of these two views consists of a two-pane layout. The left pane displays a list of the installed or available datasets
with some very basic information for each. Once the user clicks on one of these datasets, the right pane displays
extensive information about the dataset and its files.

34 Chapter 1. Contents

_images/dataset-manager.jpg

Gaia Sky Documentation

The Available for download tab lists all server datasets that can be downloaded and installed locally. In order to display

a dataset in Gaia Sky, it must first be installed locally. To install a dataset, use the install button or right-click on
the dataset entry in the left pane and select Install in the context menu.

Multiple datasets can be downloading at the same time without problems. The download process can be canceled at
any time by clicking on the Cancel download button in the right pane. Canceled downloads can be resumed any time
without losing progress, as the .part files are kept in the file system.

Installed datasets

Fig. 21: The installed datasets view in the dataset manager.

The installed datasets view displays the datasets found in the currently selected data directory. From this view, you can
enable and disable datasets by either using the checkbox next to the dataset name, or by right-clicking and selecting
Enable or Disable in the context menu. Only datasets that are enabled are loaded into Gaia Sky.

Some datasets are always enabled. This is the case for all texture packs (whose usage depends on the graphics quality
setting) and for the base data pack.

From this view you can also remove datasets. To do so, bring up the context menu by right-clicking on the dataset entry

in the datasets list (left pane) and select Remove. Removing a dataset actually deletes all of its files on disk, so a
confirmation dialog is displayed.

1.4. User manual 35

_images/catalog-selection.jpg

Gaia Sky Documentation

1.4.2 Controls

This section describes the controls of Gaia Sky.

Contents

• Controls

– Keyboard controls

∗ Keyboard mappings

∗ Free/focus mode controls

∗ Spacecraft mode controls

– Mouse controls

∗ Focus mode

∗ Free mode

∗ Game mode

– Gamepad controls

∗ Default camera mappings

∗ Spacecraft camera mappings

∗ Gamepad UI

– GUI navigation

Keyboard controls

To check the most up-to-date controls go to the Controls tab in the preferences window. Here are the default keyboard
controls depending on the current camera mode. Learn more about camera modes in the Camera modes section.

Keyboard mappings

The keyboard mappings are stored in an internal file called keyboard.mappings (link). If you want to edit the key-
board mappings, copy the file it into $GS_CONFIG/mappings/ (if it is not yet there) and edit it. This overrides the
default internal mappings file. The file consists of a series of <ACTION>=<KEYS> entries. For example:

Help
action.help = F1
action.help = H

Exit
action.exit = ESC

Home
action.home = HOME

Preferences
action.preferences = P

(continues on next page)

36 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/mappings/keyboard.mappings

Gaia Sky Documentation

(continued from previous page)

#action.playcamera = C

The available actions are the following:

• action.toggle/element.stars – toggle stars

• action.toggle/element.planets – toggle planets

• action.toggle/element.moons – toggle moons

• action.toggle/element.satellites – toggle satellites

• action.toggle/element.orbits – toggle orbits

• action.toggle/element.labels – toggle labels

• action.toggle/element.equatorial – toggle equatorial grid

• action.toggle/element.ecliptic – toggle ecliptic grid

• action.toggle/element.galactic – toggle galactic grid

• action.toggle/element.clusters – toggle star clusters

• action.toggle/element.asteroids – toggle asteroids

• action.toggle/element.constellations – toggle constellations

• action.toggle/element.boundaries – toggle constellation boundaries

• action.toggle/element.meshes – toggle meshes

• action.toggle/element.keyframes – toggle keyframes

• action.toggle/element.recursivegrid – toggle recursive grid

• action.toggle/element.stereomode – toggle stereoscopic mode

• action.switchstereoprofile – switch stereoscopic profile

• action.toggle/element.planetarium – toggle planetarium mode

• action.toggle/element.planetarium.projection – switch planetarium projection

• action.toggle/element.360 – toggle cubemap mode

• action.toggle/element.projection – switch cubemap projection mode

• action.toggle/element.orthosphere – toggle orthosphere mode

• action.toggle/element.orthosphere.profile – switch orthosphere profile

• action.toggle/element.octreeparticlefade – toggle particle smooth transitions in LOD datasets

• action.toggle/element.debugmode – enable/disable debug information

• action.toggle/element.cleanmode – toggle clean UI mode (remove the user interface)

• action.toggle/gui.minimap.title – toggle minimap

• action.toggle/gui.mousecapture – toggle mouse capture

• action.expandcollapse.pane/gui.time – toggle time pane

• action.expandcollapse.pane/gui.camera – toggle camera pane

• action.expandcollapse.pane/gui.visibility – toggle visibility pane

1.4. User manual 37

Gaia Sky Documentation

• action.expandcollapse.pane/gui.lighting – toggle visual settings pane

• action.expandcollapse.pane/gui.dataset.title – toggle datasets pane

• action.expandcollapse.pane/gui.bookmarks – toggle bookmarks pane

• action.screenshot – capture and save screenshot

• action.screenshot.cubemap – save 6 current cubemap faces to image files (only in panorama, planetarium
and orthosphere modes)

• action.pauseresume – start/stop time simulation

• action.dividetime – reduce time warp (x0.5)

• action.doubletime – increase time warp (x2)

• action.time.warp.reset – reset time warp

• action.playcamera – open a camera path file

• action.decfov – decrease field of view angle

• action.incfov – increase field of view angle

• action.toggle/camera.mode – switch camera modes

• camera.full/camera.FREE_MODE – enable free mode

• camera.full/camera.FOCUS_MODE – enable focus mode

• camera.full/camera.GAME_MODE – enable game mode

• camera.full/camera.SPACECRAFT_MODE – enable spacecraft mode

• action.toggle/camera.cinematic – toggle cinematic camera mode

• action.camera.speedup – keep pressed to speed the camera up

• action.starpointsize.inc – increase star point size

• action.starpointsize.dec – decrease star point size

• action.starpointsize.reset – reset star point size

• action.gotoobject – immediately move to focus object

• action.home – go to home object

• action.search – open search dialog

• action.log – show system log

• action.preferences – show preferences dialog

• action.help – open help dialog

• action.slave.configure – show slave configuration dialog

• action.loadcatalog – load a dataset

• action.upscale – debug upscale filter

• action.keyframe – add new keyframe at the end

• action.controller.gui.in – show/hide controller UI

• action.toggle/element.controls – expand/collapse UI controls

• action.ui.reload – reload user interface

38 Chapter 1. Contents

Gaia Sky Documentation

• action.resettime – reset simulation time to current

• action.toggle/element.frameoutput – toggle frame output

• action.exit – quit Gaia Sky

• action.togglefs – toggle full screen mode

Find the current keyboard mappings associations in the controls tab of the preferences window within Gaia Sky.

Fig. 22: The controls settings in Gaia Sky

Free/focus mode controls

These are the default keyboard controls that apply to the focus, free and game camera modes.

Key(s) Action
↑ camera forward
↓ camera backward
→ rotate/yaw right
← rotate/yaw left
Ctrl + g instantly move to focus object
Home back to Earth (or any other home object)
Tab toggle minimap
Ctrl + r reset time to current
Num 0 or 0 free camera
Num 1 or 1 focus camera
Num 2 or 2 game mode
Num 3 or 3 spacecraft mode
Ctrl + o load new dataset
Ctrl + m toggle camera mode
Ctrl + c toggle cinematic camera behavior

continues on next page

1.4. User manual 39

Gaia Sky Documentation

Table 1 – continued from previous page
Key(s) Action
hold down z multiply camera speed
Ctrl + w new keyframe
Ctrl + k panorama mode
Space pause/resume time
F1 help dialog
F5 take screenshot
F6 start/stop frame output mode
F7 save cubemap faces as image files
F11 toggle fullscreen/windowed mode
Ctrl + f or f search dialog
Esc or q quit application
p open preferences dialog
h open help dialog
r run script dialog
t toggle time pane
c toggle camera pane
v toggle visibility pane
l toggle visual settings pane
d toggle datasets pane
b toggle bookmakrs pane
Alt + c run camera path file dialog
, halve time warp (hold for smooth decrease)
. double time warp (hold for smooth increase)
Ctrl + . reset time warp to 1
Shift + b toggle constellation boundaries
Shift + c toggle constellation lines
Shift + e toggle ecliptic grid
Shift + g toggle galactic grid
Shift + l toggle labels
Shift + m toggle moons
Shift + o toggle orbits
Shift + p toggle planets
Shift + q toggle equatorial grid
Shift + s toggle stars
Shift + t toggle satellites
Shift + v toggle star clusters
Shift + h toggle meshes
Shift + r toggle recursive grid
Shift + k toggle keyframes
Shift + u expand/collapse control panel
Ctrl + u toggle UI completely (hide/show user interface)
Ctrl + d toggle debug info
Ctrl + s toggle stereoscopic mode
Ctrl + Shift + s switch between stereoscopic profiles
Ctrl + k toggle 360 panorama mode
Ctrl + Shift + k switch between 360 projections
Ctrl + p toggle planetarium mode
Ctrl + Shift + p switch planetarium projections
Ctrl + j toggle orthosphere mode

continues on next page

40 Chapter 1. Contents

Gaia Sky Documentation

Table 1 – continued from previous page
Key(s) Action
Ctrl + Shift + j switch between orthosphere profiles

Spacecraft mode controls

These controls apply only to the spacecraft mode.

Key(s) Action
w apply forward thrust
s apply backward thrust
a roll left
d roll right
k stop spaceship automatically
l stabilize spaceship automatically
↑ pitch up
↓ pitch down
← yaw left
→ yaw right
PgUp increase engine power (x10)
PgDown decrease engine power (x0.1)

Mouse controls

Here are the default mouse controls for the focus and free Camera modes. The other modes do not have mouse controls.

Focus mode

Mouse + keys Action
L-MOUSE DOUBLE-CLICK select focus object
L-MOUSE CLICK stop all rotation and translation movement
L-MOUSE + DRAG apply rotation around focus
L-MOUSE + Shift + DRAG camera roll
R-MOUSE + DRAG pan view freely from focus
M-MOUSE + DRAG or WHEEL move towards/away from focus

Free mode

Mouse + keys Action
L-MOUSE DOUBLE-CLICK select object as focus (changes to focus mode)
L-MOUSE CLICK stop all rotation and translation movement
L-MOUSE + DRAG pan view
L-MOUSE + Shift + DRAG camera roll
M-MOUSE + DRAG or WHEEL forward/backward movement

1.4. User manual 41

Gaia Sky Documentation

Game mode

Use the mouse to look around and wasd to move.

Gamepad controls

Gaia Sky supports Game controllers through SDL. This means that most controllers should just work out-of-the-box.
The default controller mappings file, SDL_Controller.controller, should always be used initially. Should this file
not work for your controller, you can create your custom mappings easily and interactively by going to the preferences
window > controls and clicking on the “Configure” button next to your controller. Then, follow screen instructions.

Fig. 23: Configuring gamepad controls in Gaia Sky

User mappings files (see here) can be added manually to $GS_CONFIG/mappings (see folders) folder, or set up auto-
matically from within Gaia Sky. The controller mappings file contains the axis or button numbers for each input type.
Below is an example of one such file.

#Controller mappings definition file for Wireless Steam Controller
axis.dpad.h=-1
axis.dpad.v=1
axis.lstick.h=0
axis.lstick.h.sensitivity=1.0
axis.lstick.v=1
axis.lstick.v.sensitivity=1.0
axis.lt=-1
axis.lt.sensitivity=1.0
axis.rstick.h=2
axis.rstick.h.sensitivity=1.0

(continues on next page)

42 Chapter 1. Contents

https://www.libsdl.org
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/mappings/SDL_Controller.controller

Gaia Sky Documentation

(continued from previous page)

axis.rstick.v=3
axis.rstick.v.sensitivity=1.0
axis.rt=-1
axis.rt.sensitivity=-1.0
axis.value.pow=4.0
button.a=2
button.b=3
button.dpad.d=18
button.dpad.l=19
button.dpad.r=20
button.dpad.u=17
button.lb=6
button.lstick=13
button.lt=-1
button.rb=7
button.rstick=-1
button.rt=-1
button.select=10
button.start=11
button.x=4
button.y=5

Default camera mappings

Fig. 24: Gamepad annotated with axes and buttons

The following table lists the actions assigned to each of the gamepad axes and buttons.

1.4. User manual 43

Gaia Sky Documentation

Button/axis Action

/ rotate around horizontally (focus mode), yaw (free mode)

/ rotate around vertycally (focus mode), pitch (free mode)

/ roll

/ forward/backward

(right trigger) roll right

(left trigger) roll left

preferences

toggle labels

toggle asteroids

toggle minimap

toggle orbits

hold to speed up time

hold to slow down time

start time

stop time

(click) stop time

Spacecraft camera mappings

In spacecraft mode, the actions mapped to the different gamepad axes and buttons are different. They are listed in the
table below.

44 Chapter 1. Contents

Gaia Sky Documentation

Button/axis Action

/ spacecraft yaw

/ spacecraft pitch

/ spacecraft roll

/ thrust forward/backward

(right bumper) spacecraft roll right

(left bumper) spacecraft roll left

(right trigger) thrust forward

(left trigger) thrust backward

toggle labels

toggle orbits

stop spacecraft

level spacecraft

increase engine power (x10)

decrease engine power (x0.1)

Gamepad UI

The gamepad UI allows access to some basic actions and settings directly using a gamepad. To open it, press .

There are seven tabs at the top that can be navigated with and . The tabs are the following:

• Search – provides a virtual keyboard to search for objects.

• Bookmarks – access the system bookmarks (limited to 4 nested folder levels).

• Camera – camera parameters like the mode or the field of view.

• Time – controls to start and stop time, as well as to set the time warp factor.

• Types – visibility of elements in Gaia Sky.

• Controls – gamepad settings and mappings.

• Graphics – graphics options like post-processing effect parameters.

• System – system-wide settings. Also a button to quit Gaia Sky.

1.4. User manual 45

Gaia Sky Documentation

Fig. 25: The gamepad UI

Close the gamepad UI with or .

GUI navigation

Gaia Sky supports the navigation of its GUI windows using the gamepad and keyboard mappings, additionally to the
usual mouse clicks. Below are the most common actions and how to achieve them in a keyboard- or gamepad- centric
workflow.

46 Chapter 1. Contents

Gaia Sky Documentation

Action Keyboard Gamepad

Action (click focused button) Enter

Move focus up ↑ /

Move focus down ↓ /

Move focus right → /

Move focus left ← /

Move slider (when focused) ←/→/home/end /

Move select box selection (when focused) ←/→/home/end /

Check check box (when focused) Enter

Cycle dialog bottom buttons Alt

Close current dialog (with accept action) /
Close current dialog (with cancel action) Esc /

Tab right Tab

Tab left Shift + Tab

1.4.3 User interface

Note: Since Gaia Sky 3.5.5, Gaia Sky offers two UI modes: the new UI and the old control panel.

The main elements in the user interface are the control panes, the camera info panel, the quick info bar, the action
buttons and the system info panel. They are all described in this section.

Contents

• User interface

– Control panes

∗ Time pane

∗ Camera pane

∗ Visibility pane

· Per-object visibility

· Velocity vectors

1.4. User manual 47

Gaia Sky Documentation

∗ Visual settings pane

∗ Datasets pane

∗ Location log pane

∗ Bookmarks pane

– Camera info panel

– Quick info bar

– Action buttons

∗ Minimap

∗ Load dataset

∗ Preferences window

∗ System log

∗ About/help

∗ Exit

– System info panel

Control panes

The most important actions in Gaia Sky can be accessed via the control panes, anchored to the top-left of the screen.
There are seven panes, Time, Camera, Type visibility, Visual settings, Datasets, Objects, and Music.

The panes are accessed via the control panel (in the old UI), or via buttons anchored to the left of the screen (new UI).

48 Chapter 1. Contents

Gaia Sky Documentation

The new UI, based on anchored
buttons to the left of the screen.

Collapsed control panel
(old UI)

Expanded control panel
(old UI)

The seven panes, except for the Time pane in the old UI, are hidden at startup. To expand them and reveal its controls

just click on the little arrow bottom icon at the right of the pane title (in the old UI), or click on the corresponding

button (new UI). Use the arrow right icon , or the corresponding button to collapse them again. In the old UI, panes
can also be detached to their own window. To do so, use the detach icon .

The seven panes are:

• Time pane.

• Camera pane.

• Visibility pane.

• Visual settings pane.

• Datasets pane.

• Location log pane.

1.4. User manual 49

../_images/new-ui.jpg
../_images/control-panel-collapsed.jpg
../_images/control-panel-expanded.jpg

Gaia Sky Documentation

• Bookmarks pane.

Time pane

Hint: Expand and collapse the time pane by clicking on the clock button or with t.

Play and pause the simulation using the / Play/Pause buttons in the time pane, or toggle using Space. You

can also change time warp, which is expressed as a scaling factor, using the provided Warp factor slider. Use , or

and . or to divide by 2 and double the value of the time warp respectively. If you keep either of those pressed, the
warp factor will increase or decrease steadily.

Use the Reset time and warp button to reset the time warp to x1, and set the time to the current real world time (UTC).

Fig. 26: The time pane displays the simulation date and time, along with controls to start and pause the time, and a
slider to control the time warp (speed).

Camera pane

Hint: Expand and collapse the camera pane by clicking on the camera button or with c.

In the camera options pane on the left you can select the type of camera. This can also be done by using the Numpad
0-3 keys.

There are four camera modes:

• Free mode – the camera is not linked to any object and its velocity is exponential with respect to the distance to
the origin (Sun).

• Focus mode – the camera is linked to a focus object and it rotates and rolls with respect to it.

• Game mode – a game mode which maps the controls wasd + mouse look.

50 Chapter 1. Contents

../_images/pane-time.jpg

Gaia Sky Documentation

Fig. 27: The camera pane contains controls related to the camera setup and operation.

1.4. User manual 51

../_images/pane-camera.jpg

Gaia Sky Documentation

• Spacecraft– take control of a spacecraft and navigate around at will.

For more information on the camera modes, see the Camera modes section.

Additionally, there are a number of sliders for you to control different parameters of the camera:

• Field of view – control the field of view angle of the camera. The bigger it is, the larger the portion of the scene
represented.

• Camera speed – control the longitudinal speed of the camera, i.e. how fast it goes forward and backward.

• Rotation speed – control the transversal speed of the camera, i.e. how fast it rotates around an object.

• Turn speed – control the turning speed of the camera, i.e. how fast it changes its orientation (yaw, pitch and
roll).

The checkbox Cinematic camera enables the cinematic behavior, described in the camera behaviors section.

The checkbox Lock the camera to focus links the reference system of the camera to that of the focus object and thus
it moves with it. When focus lock is checked, the camera stays at the same relative position to the focus object.

The checkbox Lock orientation applies the rotation transformation of the focus to the camera, so that the camera
rotates when the focus does.

Visibility pane

Hint: Expand and collapse the visibility pane by clicking on the eye button or with v.

The visibility pane offers controls to hide and show object types. Object types are groups of objects that are of the
same category, like stars, planets, labels, galaxies, grids, etc. The pane also contains a button at the bottom that gives
access to the per-object visibility window, which enables visibility control for individual objects.

Fig. 28: The visibility pane contains controls to hide and show types of objects.

52 Chapter 1. Contents

../_images/pane-visibility.jpg

Gaia Sky Documentation

For example you can hide the stars by clicking on the stars toggle. The object types available are the following:

• – Stars

• – Planets

• – Moons

• – Satellites

• – Asteroids

• – Star clusters

• – Milky Way

• – Galaxies

• – Nebulae

• – Meshes

• – Equatorial grid

• – Ecliptic grid

• – Galactic grid

• – Recursive grid

• – Labels

• – Titles

• – Orbits

• – Locations

• – Cosmic locations

• – Countries

• – Constellations

1.4. User manual 53

Gaia Sky Documentation

• – Constellation boundaries

• – Rulers

• – Particle effects

• – Atmospheres

• – Clouds

• – Axes

• – Velocity vectors

• – Keyframes

• – Others

Per-object visibility

This button provides access to controls to manipulate the individual visibility of objects.

Fig. 29: Individual object visibility button and dialog

54 Chapter 1. Contents

../_images/per-object-vis.jpg

Gaia Sky Documentation

As shown in the image above, when clicking the Per-object visibility button, a new dialog appears, from which indi-
vidual objects can be toggled on and off. They are organized per object type (top of the dialog). Once the object type
is selected, the list of object appears in the bottom part.

Hint: Stars do not appear in the per-object visibility panel!

Since there are so many stars, they are not in the per-object visibility panel as single objects. Instead, they show up in
groups. A single standalone catalog is a single star group. In the case of LOD catalogs like the ones based on Gaia
data releases, each octree node contains a star group. However, individual star visibility can still be manipulated using
the eye icon in the focus information pane when the star is focused.

Velocity vectors

Enabling velocity vectors activates the representation of star velocities, if the currently loaded catalog provides them.
Once velocity vectors are activated, a few extra controls become available to tweak their length and color.

Fig. 30: Velocity vectors in Gaia Sky

• Number factor – control how many velocity vectors are rendered. The stars are sorted by magnitude (ascending)
so the brightest stars will get velocity vectors first.

• Length factor – length factor to scale the velocity vectors.

• Color mode – choose the color scheme for the velocity vectors:

– Direction – color-code the vectors by their direction. The vectors �⃗� are pre-processed (�⃗�′ = |�⃗�|+1
2) and

then the 𝑥𝑦𝑧 components are mapped to the colors 𝑟𝑔𝑏.

– Speed – the speed is normalized in from [0, 100]𝐾𝑚/ℎ to [0, 1] and then mapped to colors using a long
rainbow colormap (see here).

1.4. User manual 55

../_images/velocity-vectors.jpg
http://www.particleincell.com/blog/2014/colormap/

Gaia Sky Documentation

– Has radial velocity – stars in blue have radial velocity, stars in red have no radial velocity.

– Redshift from the Sun – map the redshift (radial velocity) from the sun using a red-to-blue colormap.

– Redshift from the camera – map the redshift (radial velocity) from the current camera position using a
red-to-blue colormap.

– Solid color – use a solid color for all arrows.

• Show arrowheads – Whether to show the vectors with arrow caps or not.

Hint: Control the width of the velocity vectors with the line width slider in the visual settings pane.

Visual settings pane

Hint: Expand and collapse the visual settings pane by clicking on the bolt button or with l.

The visual settings pane contains a few options to control the shading of stars and other elements:

• Brightness power – exponent of power function that controls the brightness of stars. Makes bright stars brighter
and faint stars fainter.

• Star brightness – control the brightness of stars.

• Star size (px) – control the size of point-like stars.

• Min. star opacity – set a minimum opacity for the faintest stars.

• Ambient light – control the amount of ambient light. This only affects the models such as the planets or satellites.

• Line width – control the width of all lines in Gaia Sky (orbits, velocity vectors, etc.).

• Label size – control the size of the labels.

• Elevation multiplier – scale the height representation.

Datasets pane

Hint: Expand and collapse the datasets pane by clicking on the hard disk button or with d.

The datasets pane contains all the datasets currently loaded. For each dataset, a highlight color can be defined. The
dataset visual settings window can be used to modify the particle aspect, highlighting properties or the transition limits.

It is also possible to define arbitrary filters on any of the properties of the elements of the dataset, and to add arbitrary
affine transformations. Datasets can be highlighted by clicking on the little crosshair below the name.

Please see the datasets pane section for more information on this.

56 Chapter 1. Contents

Gaia Sky Documentation

Fig. 31: The visual settings pane with all its sliders.

Fig. 32: The datasets pane with three datasets (Milky Way, Gaia DR3 tiny, BH2 system).

1.4. User manual 57

../_images/pane-visual-settings.jpg
../_images/pane-datasets.jpg

Gaia Sky Documentation

Location log pane

Hint: Expand and collapse the location log pane by clicking on the map marker button.

Gaia Sky keeps track of the visited locations during a session, up to 200 entries. More information on the location log
can be found in the location log section.

Fig. 33: The location log pane keeps track of the objects you have visited.

Bookmarks pane

Hint: Expand and collapse the bookmarks pane by clicking on the bookmark button or with b.

Gaia Sky offers a bookmark system to keep your favorite objects organized and at hand. This panel centralizes the
operation of bookmarks. You can find more information on this in the bookmarks section.

Camera info panel

The camera info panel, also known as focus info panel, is anchored to the bottom-right of the main window. See the
camera info panel section for more information.

58 Chapter 1. Contents

../_images/pane-location-log.jpg

Gaia Sky Documentation

Fig. 34: The bookmarks pane shows the user-defined bookmarks.

Quick info bar

Anchored to the top of the screen is the quick info bar, which provides the following information at a glance:

• Simulation date and time – click it to open the date/time picker window to edit the time.

• Time warp – the current speed of time, or “time off” if time is paused.

• Current focus object – the current camera focus object, if any.

• Current closest object – the current object closest to our location.

• Current home object – the home object. This is typically the Earth, but can be changed by editing the configura-
tion file.

The colors of the focus, closest and home objects correspond to the colors of the cross-hairs. The cross-hairs can be

enabled or disabled from the Interface settings tab in the preferences window (use p to bring it up).

Action buttons

Anchored to the bottom-left are some buttons to perform some special actions. They are described in the following
sub-sections:

• Minimap.

• Load dataset.

• Preferences window.

• System log.

• About/help.

1.4. User manual 59

../_images/pane-bookmarks.jpg

Gaia Sky Documentation

Fig. 35: The camera info pane when the camera is in focus mode. In this state, it is also referred to as focus info pane,
and it displays information on the focus (top), the mouse pointer (middle), and the camera position and state (bottom).

Fig. 36: The quick info bar is anchored to the top of the window and displays useful information at a glance.

60 Chapter 1. Contents

../_images/camera-info-pane-focusmode.jpg
../_images/quick-info-bar.jpg

Gaia Sky Documentation

• Exit.

Minimap

Use the mini-map button or Tab to toggle the mini-map on an off. The mini-map offers a contextual view of
your position as a top and side projection, relative to the closest objects and the distance to the Sun.

Load dataset

Use the open folder button or Ctrl + o to load a new VOTable file (.vot) into Gaia Sky. The dataset loading sec-
tion contains more information on dataset loading. Also, check out the STIL data loader section for more information
on the metadata needed for Gaia Sky to parse the dataset correctly.

Preferences window

Use the preferences button, or p, to bring up the preferences window, from which the settings and configuration
can be modified. For a detailed description of the configuration options refer to the Configuration Instructions.

System log

Use the log button, or Alt + l, to bring up the system log window, which displays the Gaia Sky log for the current
session. The log can be exported to a file by clicking on the Export to file button. The location of the exported
log files is $GS_DATA (see folders).

About/help

Use the help button, or h, to bring up the help dialog, where information on the current system, OpenGL settings,
Java memory, updates and contact can be found.

Exit

Click on the cross icon to exit Gaia Sky. You can also use Esc.

1.4. User manual 61

Gaia Sky Documentation

System info panel

Bring up the system info panel by hitting Ctrl + d, or by using the Show debug info checkbox in the System tab in
the preferences window. The system information panel section contains more information on this topic.

1.4.4 Camera settings

The camera settings are accessed via the camera pane. This section describes the two main settings that affect how the
camera behaves: camera modes and camera behaviors.

Contents

• Camera settings

– Camera modes

∗ Focus mode

· Object tracking

∗ Free mode

∗ Game mode

∗ Spacecraft mode

– Camera behaviors

∗ Cinematic behavior

∗ Non-cinematic behavior

Camera modes

Gaia Sky offers four basic camera modes.

Hint: The ‘Gaia scene’ camera mode has been removed in Gaia Sky 3.2.2. The three ‘Gaia FOV’ modes have been
removed after Gaia Sky 3.5.4-1.

Focus mode

This is the default mode. In this mode the camera movement is locked to a focus object, which can be selected by
double clicking or by using the find dialog (Ctrl + F). There are two extra options available. These can be activated
using the checkboxes at the bottom of the Camera panel in the GUI Controls window:

• Lock camera to object – the relative position of the camera with respect to the focus object is maintained.
Otherwise, the camera position does not change.

• Lock orientation – the camera rotates with the object to keep the same perspective of it at all times.

62 Chapter 1. Contents

Gaia Sky Documentation

Object tracking

Usually, in focus mode, the direction of the camera points to the focus object. It is possible, however, to track a different
object while still having our position linked to the focus object. To do so, right-click on the object to track and select
‘Track object: Object name’ in the context menu that pops up. This will cause the camera direction to automatically
follow the tracking object at all times. To disable tracking, right-click anywhere and select ‘Remove tracking object’

The description of the controls in focus mode can be found here:

• Keyboard controls in focus mode

• Mouse controls in focus mode

• Gamepad controls

Hint: Numpad 1 or 1 – enter focus mode

Free mode

This mode does not lock the camera to a focus object but it lets it roam free in space.

• Keyboard controls in free mode

• Mouse controls in free mode

• Gamepad controls

Hint: Numpad 0 or 0 – enter free mode

Game mode

This mode maps the standard control system for most games (wasd + Mouse look) in Gaia Sky. Additionally, it is
possible to add gravity to objects, so that when the camera is closer to a planet than a certain threshold, gravity will
pull it to the ground.Quit

Hint: Numpad 2 or 2 – enter game mode

Spacecraft mode

In this mode you take control of a spacecraft. In the spacecraft mode, the GUI changes completely. The Options window
disappears and a new user interface is shown in its place at the bottom left of the screen.

• Attitude indicator – shown as a ball with the horizon and other marks. It represents the current orientation of
the spacecraft with respect to the equatorial system.

• – indicate the direction the spacecraft is currently headed to.

1.4. User manual 63

Gaia Sky Documentation

• – indicate direction of the current velocity vector, if any.

• – indicate inverse direction of the current velocity vector, if any.

• Engine Power – current power of the engine. It is a multiplier in steps of powers of ten. Low engine power
levels allow for Solar System or planetary travel, whereas high engine power levels are suitable for galactic and
intergalactic exploration. Increase the power clicking on and decrease it clicking on .

• – stabilise the yaw, pitch and roll angles. If rotation is applied during the stabilisation, the stabilisation is
canceled.

• – stop the spacecraft until its velocity with respect to the Sun is 0. If thrust is applied during the stopping,
the stopping is canceled.

• – return to the focus mode.

Additionally, it is possible to adjust three more parameters:

• Responsiveness – control how fast the spacecraft reacts to the user’s yaw/pitch/roll commands. It could be seen
as the power of the thrusters.

• Drag – control the friction force applied to all the forces acting on the spacecraft (engine force, yaw, pitch, and
roll). Set it to zero for a real zero G simulation.

• Force velocity to heading direction – make the spacecraft to always move in the direction it is facing, instead
of using the regular momentum-based motion. Even though physically inaccurate, this makes it much easier to
control and arguably more fun to play with.

• Keyboard controls in spacecraft mode

• Gamepad controls

Hint: NUMPAD_3 – enter spacecraft mode

Camera behaviors

Since version 1.5.0 a new option is available in the user interface to control the behavior of the camera, the cinematic
mode toggle. The cinematic mode is in fact the same exact behavior the camera has had in Gaia Sky since the first
release. If cinematic mode is not enabled, however, the camera adopts a new behavior which is much more responsive.

Hint: enable and disable the cinematic camera behavior with ctrl + c.

64 Chapter 1. Contents

Gaia Sky Documentation

Fig. 37: Spacecraft mode controls view, with the attitude indicator ball at the center, the control buttons at the bottom
and the engine power to the left.

Cinematic behavior

This behavior makes the camera use acceleration and momentum, leading to very smooth transitions and move-
ments. This is the ideal camera to use when recording camera paths or when showcasing to an audience.

Non-cinematic behavior

In this behavior the camera becomes much more responsive to the user’s commands and inputs. There is no longer
an acceleration factor, and momentum is very minimal. This is the default behavior as of version 1.5.0 and probably
better meets the expectations of new users.

1.4.5 Search objects

Hint: You can search objects by pressing f, / or Shift + f at any time.

You can look up any object by name by pressing the search key binding (see info box above). This brings up the search
dialog and focuses the search input field. Just enter the name of the object in that input field and Gaia Sky will focus
it immediately if there is an exact match. Otherwise, search suggestions are shown as you type, with the most relevant
results at the top. Use Tab to cycle between them, and Enter to focus on the current selection.

A successful search puts the camera in focus mode.

1.4. User manual 65

Gaia Sky Documentation

Fig. 38: The search dialog in Gaia Sky

1.4.6 Camera info panel

The camera info panel, also known as focus panel, is anchored to the bottom-right of the main window.

Contents

• Camera info panel

– Focus pane

– Mouse pointer

– Camera

Whenever the camera is in focus mode, information about the current focus is displayed here. Additionally, the current
location of the mouse pointer and the speed and coordinates of the camera in the internal reference system are also
shown at the bottom.

The camera info panel contains three blocks when the camera is in focus mode. When it is in free mode, only the two
bottom blocks are available:

• Focus information, at the top. Only shown when the camera is in focus mode.

• Mouse pointer information, in the middle.

• Camera information, to the bottom.

66 Chapter 1. Contents

_images/search-dialog.jpg

Gaia Sky Documentation

Fig. 39: The camera info panel in Gaia Sky

Focus pane

The top line of the focus pane contains the name and type of the current focus object (in your theme accent color, green
in the screenshot above) plus some icons:

• toggle the visibility of this object on and off.

• toggle the ‘always show label’ flag for this object, so that its label is always shown regardless of the object’s
solid angle.

• add this object to the bookmarks.

• moves the camera to the object with a smooth transition.

• land on the object.

• open the window to choose a location to land on, and execute the landing.

The information items contained in the focus pane are updated in real time, and are the following:

• Object type.

• ID – object ID.

• Names – object names, as a list.

1.4. User manual 67

Gaia Sky Documentation

• 𝛼 – right ascension (𝛼), in degrees.

• 𝛿 – declination (𝛿), in degrees.

• 𝜇𝛼⋆ – proper motion in alpha (𝜇𝛼⋆), in mas/s.

• 𝜇𝛿 – proper motion in delta (𝜇𝛿), in mas/s.

• Rad vel – radial velocity, in km/s.

• App mag (E) – apparent magnitude as seen from Earth.

• App mag (C) – apparent magnitude as seen from the current camera position.

• Abs mag – absolute magnitude.

• Angle – current solid angle. For stars, this involves a lot of guess-work. See the star rendering section for more
information.

• Dist/sol – distance from the focus object to the Sun.

• Dist/cam – distance from the focus object to the camera.

• Radius – radius of the object, in km.

• + Info button – lists all the local data on the object, and offers a preview of the Wikipedia article for this object,
if it exists. If the object belongs to a VOTable catalog and has additional columns, those are displayed here as
well.

• Archive button – provides the archive data for the given star. Only works for Gaia and Hipparcos stars.

• Simbad link, opens in a browser with the object information in the Simbad database.

Mouse pointer

This section contains the current location of the mouse pointer in the equatorial reference system, as sky-projected
coordinates. Additionally, when the pointer is over a planet or moon, we already get the longitude and latitude values.

• 𝛼 / 𝛿 (pointer) – the current location of the mouse pointer in the equatorial reference system (sky coordinates).

• LatLon – the latitude and longitude of the mouse pointer on the surface of a planet or moon. Only updated when
the mouse pointer is on a planet or moon.

• 𝛼 / 𝛿 (view) – the current location of the center of the view in the equatorial reference system (sky coordinates).

Camera

This section contains the current speed of the camera in Km/h, plus the distance from the camera to the Sun and the
current location of the camera in the internal reference system (equatorial cartesian coordinates).

• Tracking – the name of the object the camera is currently tracking, if any.

• Velocity – current camera velocity.

• Dist/Sol – distance from the camera to the Sun.

68 Chapter 1. Contents

https://simbad.u-strasbg.fr

Gaia Sky Documentation

Fig. 40: The camera info panel when the camera is in focus mode. In this state, it is also referred to as focus info pane,
and it displays information on the focus (top), the mouse pointer (middle), and the camera position and state (bottom).

Fig. 41: The camera info panel when the camera is in free mode only provides information on the status, velocity and
location of the camera, as well as the mouse pointer.

1.4. User manual 69

../_images/camera-info-pane-focusmode.jpg
../_images/camera-info-pane-freemode.jpg

Gaia Sky Documentation

1.4.7 Object visiblity

Gaia Sky offers two different ways to control object visiblity: type visibility and per-object visibility. The main differ-
ence is that, while type visibility acts on all objects of a given component type (think stars, labels, grids, planets, etc.),
per-object visibility is capable of hiding and showing individual objects.

You can toggle object types on and off by clicking on their icon in the Type visibility pane in the control panel,
as described here.

You can also hide and show individual objects by using the eye icon in the focus panel (when in focus mode) or by
using the dedicated window, as described in the individual visibility section.

1.4.8 Datasets

Gaia Sky supports the loading and visualization of datasets and catalogs (used interchangeably in this document) of
different nature. Catalogs are groups of similar objects that are loaded and displayed at once.

Contents

• Datasets

– Preparing datasets

– Loading datasets

∗ Star catalogs

∗ Particle datasets

∗ Star cluster catalogs

∗ Variable star catalogs

– Datasets pane

∗ Dataset highlighting

∗ Dataset visual settings

∗ Dataset filters

∗ Dataset transformations

∗ Dataset inforamtion

70 Chapter 1. Contents

Gaia Sky Documentation

Preparing datasets

Please see the STIL data loader section for information about how to prepare the datasets for Gaia Sky.

Loading datasets

Catalogs and datasets can be loaded into Gaia Sky by three different means:

• Via SAMP (see this section).

• Via scripting (see this section).

• Directly using the UI. See the next paragraph.

In order to load a catalog, click on the folder icon in the controls window or press ctrl + o and choose the file
you want to load. Supported formats are .csv (Comma-Separated Values), .vot (VOTable) and FITS (as of 3.0.2).
Once the dataset has been chosen, a new window is presented to the user asking the type of the dataset and some extra
options associated with it. This window is also presented when loading a dataset via SAMP.

Hint: As of version 3.0.2, Gaia Sky supports interactive loading of FITS files.

Datasets can be star catalogs, particle datasets, star cluster datasets, or variable star catalogs, depending on whether
the new dataset contains stars (with magnitudes, colors, proper motions and whatnot), just particles (only 2D or 3D
positions and extra attributes), clusters (with properties like the visual radius) or variable stars (with light curves and
periods).

Please, see the Preparing catalogs for more information on how to prepare the datasets for Gaia Sky.

Star catalogs

Star catalogs are expected to contain some attributes of stars, like magnitudes, color indices, proper motions, etc., and
use the regular star shaders to render the stars. When selecting star datasets, there are a couple of settings available:

• Dataset name – the name of the dataset.

• Magnitude scale factor – subtractive scaling factor to apply to the magnitude of all stars (appmag = appmag
- factor).

• Label color – the color of the labels of the stars in the dataset.

• Fade in – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade in
the whole dataset. The dataset will not be visible if the camera distance from the Sun is smaller than the lower
limit, and it will be fully visible if the camera distance from the Sun is larger than the upper limit. The opacity is
interpolated between 0 and 1 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

• Fade out – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade out
the whole dataset. The dataset will not be visible if the camera distance from the Sun is larger than the upper
limit, and it will be fully visible if the camera distance from the Sun is smaller than the lower limit. The opacity
is interpolated between 1 and 0 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

1.4. User manual 71

Gaia Sky Documentation

Fig. 42: Loading a star catalog

72 Chapter 1. Contents

Gaia Sky Documentation

Particle datasets

Particle datasets only require positions to be present, and use generic shaders to render the particles. Some parameters
can be tweaked at load time to control the appearance and visibility of the particles:

• Dataset name – the name of the dataset.

• Particle color – the color of the particles. Can be modified with the particle color noise.

• Particle color noise – a value in [0,1] that controls the amount of noise to apply to the particle colors in order
to get slightly different colors for each particle in the dataset.

• Label color – color of the label of this dataset. Particles themselves do not have individual labels.

• Particle size – the size of the particles, in pixels.

• Minimum solid angle – the minimum solid angle (in radians) used to represent this particle. This is a minimum
bound on the size of the particles.

• Maximum solid angle – the maximum solid angle (in radians) used to represent this particle. This is a maximum
bound on the size of the particles.

• Number of labels – the number of labels to render for this dataset. Set to 0 to render no labels.

• Profile decay – a power that controls the radial profile of the actual particles, as in (1-d)^pow, where d is the
distance from the center to the edge of the particle, in [0,1].

• Component type – the component type to apply to the particles to control their visibility. Make sure that the
chosen component type is enabled in the Visibility pane.

• Fade in – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade in
the whole dataset. The dataset will not be visible if the camera distance from the Sun is smaller than the lower
limit, and it will be fully visible if the camera distance from the Sun is larger than the upper limit. The opacity is
interpolated between 0 and 1 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

• Fade out – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade out
the whole dataset. The dataset will not be visible if the camera distance from the Sun is larger than the upper
limit, and it will be fully visible if the camera distance from the Sun is smaller than the lower limit. The opacity
is interpolated between 1 and 0 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

Star cluster catalogs

Star cluster catalogs can also be loaded directly from the UI as of Gaia Sky 2.2.6. The loader also uses STIL to load
CSV or VOTable files. In CSV mode the units are fixed, otherwise they are read from the VOTable, if it has them. The
order of the columns is not important. The required columns are the following:

• name, proper, proper_name, common_name, designation – one or more name strings, separated by ‘|’.

• ra, alpha, right_ascension – right ascension in degrees.

• dec, delta, de, declination – declination in degrees.

• dist, distance – distance to the cluster in parsecs, or

• pllx, parallax – parallax in mas, if distance is not provided.

• rcluster, radius – the radius of the cluster in degrees.

Optional columns, which default to zero, include:

• pmra, mualpha, pm_ra – proper motion in right ascension, in mas/yr.

1.4. User manual 73

Gaia Sky Documentation

Fig. 43: Loading a point cloud dataset

74 Chapter 1. Contents

Gaia Sky Documentation

• pmdec, mudelta, pm_dec – proper motion in declination, in mas/yr.

• rv, radvel, radial_velocity – radial velocity in km/s.

Star cluster datasets require positions and radii to be present, and use wireframe spheres to render the clusters. The
parameters that can be tweaked at load time are:

• Dataset name – the name of the dataset.

• Particle color – the color of the clusters and their labels.

• Label color – color of the label of this dataset. Particles themselves do not have individual labels.

• Component type – the component type to apply to the particles to control their visibility. Make sure that the
chosen component type is enabled in the Visibility pane.

• Fade in – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade in
the whole dataset. The dataset will not be visible if the camera distance from the Sun is smaller than the lower
limit, and it will be fully visible if the camera distance from the Sun is larger than the upper limit. The opacity is
interpolated between 0 and 1 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

• Fade out – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade out
the whole dataset. The dataset will not be visible if the camera distance from the Sun is larger than the upper
limit, and it will be fully visible if the camera distance from the Sun is smaller than the lower limit. The opacity
is interpolated between 1 and 0 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

Variable star catalogs

Variable stars are represented in Gaia Sky by displaying the changing magnitude visually in the scene when time is
on. These datasets are expected to contain a time series (magnitudes vs times) and a period. Only variable stars with a
period are loaded, the rest are discarded.

See the STIL data provider section for more information on how to prepare variable star datasets for Gaia Sky.

• Dataset name – the name of the dataset.

• Magnitude scale factor – subtractive scaling factor to apply to the magnitude of all stars (appmag = appmag
- factor).

• Label color – the color of the labels of the stars in the dataset.

• Fade in – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade in
the whole dataset. The dataset will not be visible if the camera distance from the Sun is smaller than the lower
limit, and it will be fully visible if the camera distance from the Sun is larger than the upper limit. The opacity is
interpolated between 0 and 1 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

• Fade out – these are two distances from the Sun, in parsecs, that will be used as interpolation limits to fade out
the whole dataset. The dataset will not be visible if the camera distance from the Sun is larger than the upper
limit, and it will be fully visible if the camera distance from the Sun is smaller than the lower limit. The opacity
is interpolated between 1 and 0 if the camera distance from the Sun is larger than the lower limit and smaller than
the upper limit.

The process by which light curves are loaded and used in Gaia Sky is a bit involved and outlined below:

1. First, we check that time series (magnitudes v times) and periods are actually present in the file.

2. Then, NaN values are removed from the light curve data points.

1.4. User manual 75

Gaia Sky Documentation

Fig. 44: Loading a star cluster catalog

76 Chapter 1. Contents

Gaia Sky Documentation

3. We fold the time series into a phase diagram using the period and sort the result accordingly with the phase for
each data point.

4. Due to a GPU memory trade-off (the time series data must be sent to the GPU for each star, and all stars must
have the same in-memory size in the GPU), we have a limitation of 20 data points per star. If the number of
incoming data points is larger than 20, we re-sample the phase diagram.

5. Finally, the magnitudes are converted to pseudo-sizes for easier representation, and passed on to the model.

Fig. 45: Loading a variable star catalog

Datasets pane

You can find a list of all datasets currently loaded in the Datasets pane, anchored to the top-left of the screen. You can
bring it up automatically by pressing d.

Each dataset has a panel that can be expanded by clicking on the icon by the dataset name. Once expanded, a

dataset panel can be collapsed with .

The dataset panel, once expanded, contains a few controls that depend on the type of dataset, and that allow the user
to modify some settings about how the dataset is displayed. These controls are in the topmost line in the dataset pane.

1.4. User manual 77

Gaia Sky Documentation

Fig. 46: Datasets pane in Gaia Sky

Fig. 47: Dataset panel in the datasets pane for the ‘Gaia DR3 weeny’ catalog

78 Chapter 1. Contents

Gaia Sky Documentation

From left to right, the controls are the following:

• – toggle the visibility of the dataset. This makes the whole dataset appear and disappear.

• – highlight the dataset using the current color and particle size. The color can be changed by clicking
on the rightmost button (blue square in the image above), and the particle size factor can be adjusted from the
dataset visual settings window. Datasets can also be color-mapped. Only star, particle, LOD and orbital elements
datasets can be highlighted.

• – open the dataset visual settings window.

• – open the dataset filters window.

• – open the dataset affine transformations window.

• – open the dataset information window.

• – delete the dataset.

After the controls, we can find some information:

• The type of dataset, in gray.

• The dataset description, if any. Move your mouse to the small (i) symbol to get the full description in a tooltip.

• The number of objects in the dataset, in blue.

Dataset highlighting

Datasets can be highlighted by clicking on the target icon . When highlighted, the colors of the particles change
according to the highlighting color or color map selected (see below), and the particles may also become larger or
smaller depending on the settings in the highlight section of the visual settings dialog.

To the right of the dataset pane is the color icon. Use it to define the highlight color for the dataset. The color can either
be a plain color or a color map.

A plain color can be chosen using the color picker dialog that appears when clicking on the “Plain color” radio button.

A color map can be selected by clicking on the “Color map” radio button, and displays the screen shown below. From
there, you can choose the color map type, as well as the attribute to use for the mapping, and the maximum and minimum
mapping values.

The available attributes depend on the dataset type and loading method. Particle datasets have coordinate attributes
(right ascension, declination, ecliptic longitude and latitude, galactic longitude and latitude) and distance distance. Star
datasets have, additionally, apparent and absolute magnitudes, proper motions (in alpha and delta) and radial velocity.
For all datasets loaded from VOTable either directly or through SAMP, all the numeric attributes are also available

1.4. User manual 79

Gaia Sky Documentation

Fig. 48: The highlighting plain color picker dialog

80 Chapter 1. Contents

Gaia Sky Documentation

Fig. 49: The highlighting color map dialog

Dataset visual settings

Open the dataset visual settings window by clicking on the bolt icon . There are three sections, named particle
aspect, highlighting and transitions.
In the particle aspect section we can find the following controls:

• Point size – this slider controls the dataset point size. This acts as a factor on the actual size of the particles of
the dataset.

• Minimum particle solid angle [rad] – only present in particle datasets, this slider controls the minimum visual
solid angle of each particle.

• Maximum particle solid angle [rad] – only present in particle datasets, this slider controls the maximum visual
solid angle of each particle.

In the highlighting section, we can find the following properties:

• Size increase factor - scale factor to apply to the particles when the dataset is highlighted.

• Make all particles visible - raises the minimum opacity to a non-zero value when the dataset is highlighted.

In the Transitions section, we can define fade-in and fade-out rules depending on the distance from the camera to the
center of the dataset, or to the center of the reference system.

• Fade in – this check box enables the fade-in transitions, where the dataset opacity goes from 0 (invisible) to 1
(fully visible), mapped to the user given-distances in parsecs.

• Fade out – this check box enables the fade-out transitions, where the dataset opacity goes from 1 (fully visible)
to 0 (invisible), mapped to the user given-distances in parsecs.

1.4. User manual 81

Gaia Sky Documentation

Fig. 50: The dataset visual settings dialog

Dataset filters

Open the dataset filters window by clicking on the code icon . Filters are only available to particle, stars and
LOD datasets.
This dialog allows for the creation of arbitrary selection filters by setting conditions (rules) on particle attributes. Several
rules can be defined, but only one type of logical operator (AND, OR) is possible. The available attributes depend on
the dataset type and loading method.

Click on the Add filter button to add a filter, and use Add rule to add new rules to the current filter. The Rules
operator select box enables the selection of the logical operator. Then, each rule contains the attribute, the comparator

operation (<, <=, >, >=, ==, !=) and a value. Use the bin icon to delete a rule.

Dataset transformations

The dataset transformations window (open it by clicking on the matrix icon) enables the definition of arbitrary affine
transformations (only translation, rotation and scaling available, plus reference system transforms) and application to
the datasets in real time. Transformations are available to all datasets, but only particles in groups will be affected.
Single objects (models, single stars, planets, moons, etc.) that are part of a dataset are not applied the transformations.

Transformations are defined in a sequence. Each transformation is represented by a matrix. The matrices are multiplied
in the defined order. This means that the transformations are actually applied last-to-first. If you want to rotate a
dataset, and then translate it, you need to first define a translation and then a rotation.

Add a new transformation by clicking on the Add transformation button. Once the transformation appears, there are
a few settings you can change:

82 Chapter 1. Contents

Gaia Sky Documentation

Fig. 51: The dataset filters dialog

• Type – select the transformation type: translation, rotation, scaling or reference system.

• – move the transformation up in the chain.

• – move the transformation down in the chain.

• – remove the transformation.

For each transformation type we have different inputs:

• Translation – choose the X, Y and Z of your translation vector, in parsecs.

• Rotation – choose the rotation axis X, Y and Z components, plus the rotation angle, in degrees.

• Scaling – choose the scaling factor in X, Y and Z. No units here.

• Reference system – select the reference system transformation you want to apply from the select box. The
possible transformations are:

• Galactic to equatorial

• Equatorial to galactic

• Ecliptic to equatorial

• Equatorial to ecliptic

• Galactic to ecliptic

• Ecliptic to galactic

1.4. User manual 83

Gaia Sky Documentation

Fig. 52: The dataset transformations dialog

84 Chapter 1. Contents

Gaia Sky Documentation

Dataset inforamtion

Get some additional information on a dataset by clicking on the ‘i’ icon .

Fig. 53: The dataset information dialog

For each dataset you get:

• Dataset name – the name of the dataset.

• Source – the source. Only populated if the dataset is loaded from the UI or via SAMP.

• Type – the type of dataset.

• Num. objects – the number of objects in the dataset.

• Size – the size in disk.

• Loaded – exact time when the dataset was loaded.

• Description – dataset description.

1.4.9 Bookmarks

Gaia Sky offers a bookmarks manager to keep your favorite objects and locations organized, in the form of the book-

marks pane. Open the bookmarks pane by clicking on the bookmark button (to the top-left of the main window),
or by pressing b.

Bookmarks are laid out in a folder tree. Bookmarks can either be in the root level or in any of the folders, which can
also be nested.

There are two types of bookmarks:

• Object bookmarks – the bookmark contains an object, addressed by its name or identifier. When an object
bookmark is activated, the camera is put in focus mode and the object becomes the current active focus. If the

1.4. User manual 85

Gaia Sky Documentation

object does not exist in the current scene, nothing happens. If the object exists but is not visible, a small text
appears below the bookmarks tree notifying the user.

• Location bookmarks – the bookmark contains a camera state (position, direction and up vectors) plus time.
When the bookmark is activated, the camera is put in free mode and in the state defined by the bookmark. The
time is also changed to the time defined in the bookmark.

Fig. 54: The bookmarks pane in Gaia Sky.

New bookmarks are added at the end of the root level (top of the folder structure). Move bookmarks around with the
context menu that pops up when right clicking on them. This context menu also provides controls to create new folders
and to delete bookmarks. Bookmarks can also be deleted by clicking on the star next to the name. Once the bookmark
is removed, the star’s color changes to gray.

Bookmarks are saved to the file $GS_CONFIG/bookmarks/bookmarks.txt (see the folders section). The format of
the file is straightforward: each non-blank and non-commented (preceded by #) line contains a bookmark. The form
of the bookmark is folder1/folder2/[...]/$OBJECT, where $OBJECT depends on the type of bookmark.

• For object bookmarks, $OBJECT is just the name or identifier:

Solar System/Moons/Phobos

• For location bookmarks $OBJECT takes the form {[x,y,z]|[dx,dy,dz]|[ux,uy,
uz]|time_instant|name} where:

– [x,y,z] is the position in the internal reference system and internal units.

86 Chapter 1. Contents

Gaia Sky Documentation

– [dx,dy,dz] is the camera direction vector, normalized.

– [ux,uy,uz] is the camera up vector, normalized.

– time_instant is the time, with year, month, day, hour, minute, second and millisecond, in the format
1970-01-01T00:00:00Z.

– name is a user-given name to identify the bookmark. Names do not need to be unique, but it is recom-
mended.

You can edit this file directly or share it with others.

This is a valid bookmarks file, containing both object and location bookmarks:

Bookmarks file for Gaia Sky, one bookmark per line, folder separator: '/', comments: '#
→˓'
Stars/Sirius
Stars/Betelgeuse
Star Clusters/Pleiades
Star Clusters/Hyades
Satellites/Gaia
Solar System/Sun
Solar System/Earth
Solar System/Mercury
Solar System/Venus
Solar System/Mars
Solar System/Phobos
Solar System/Deimos
Solar System/Jupiter
Solar System/Saturn
Solar System/Uranus
Solar System/Neptune
Solar System/Moons/Moon
Solar System/Moons/Phobos
Solar System/Moons/Deimos
Solar System/Moons/Amalthea
Solar System/Moons/Io
Solar System/Moons/Europa
Solar System/Moons/Ganymede
Solar System/Moons/Callisto
Solar System/Moons/Prometheus
Solar System/Moons/Titan
Solar System/Moons/Rhea
Solar System/Moons/Dione
Solar System/Moons/Tethys
Solar System/Moons/Enceladus
Solar System/Moons/Mimas
Solar System/Moons/Janus
Eclipses/{[-1.3818553459726281232945836836106e2,-5.991742570017757357152905806825e1,2.
→˓130396109724412378005830455979e1]|[-0.9548201218738775,0.050259057590566286,-0.
→˓29290367357694286]|[0.20409057609035922,0.8273195986777884,-0.5233443592843308]|1601-
→˓06-30T02:22:39Z|1601 June 30}
Eclipses/{[1.1368509657421360252389426851098e2,4.930241284313914004063498650795e1,8.
→˓04234541871001128385385982754e1]|[0.6572659958889423,-0.5568060024828526,0.
→˓5079059817005352]|[0.452255658439425,0.8304891688337087,0.3251961867233694]|1816-11-
→˓19T09:48:15.369Z|1816 November 19}

(continues on next page)

1.4. User manual 87

Gaia Sky Documentation

(continued from previous page)

Eclipses/{[2.71292992133681124959295785023e1,1.177596714896257159441386475448e1,-1.
→˓4555234726955511211277605134986e2]|[0.4097340656192956,-0.6784083087277446,-0.
→˓6098197783937811]|[-0.35381119523816085,0.497988712246363,-0.7917227296215221]|1997-03-
→˓09T01:13:10.032Z|1997 March 9}

Creating bookmarks

You can create object bookmarks by simply clicking on the star next to the object’s name when in focus. Once
the object is in the bookmarks, the star will brighten up with a clear white color (depending on the UI theme). Object

bookmarks can also be created by right-clicking on the object and selecting Bookmark: [object name] in the
context menu that pops up.

You can create location bookmarks by positioning the camera in the location, orientation and time of your desired

bookmark, right clicking anywhere on the scene and selecting Bookmark current position/time.

Fig. 55: The bookmarks entries in the context menu to create an object and a location bookmark.

88 Chapter 1. Contents

Gaia Sky Documentation

1.4.10 Location log

Gaia Sky provides a small location log feature that keeps track of the visited locations and objects during a session.
Currently, the location log is limited to 200 entries. Old entries are deleted as new ones come in.

Fig. 56: The location log pane keeps track of the objects you have visited.

The location log pane can be found anchored to the right in the main window. Expand and collapse it by clicking on

the map marker button.

Every entry in the location log displays the time since the visit to the object (in orange, hover over it to get the absolute
time), and has two actions available:

• re-visits the location with the same camera and time setup as when it was first added: this sets the camera
position, direction and up vectors to match exactly the ones at the time of the visit, and set the simulation time
as well

• instantly go to the object of this location

1.4.11 System information

Gaia Sky has a couple of built-in methods to get information on the system and graphics memory, the frame rate, the
graphics device, the LOD status and much more. First, the system information panel offers a quick and easy way to
access all sorts of system information while running Gaia Sky, in the main user interface. Second, the debug mode
enables the logging of additional information to the system log, which can be helpful to analyze crashes or bugs.

Contents

• System information

– System information panel

1.4. User manual 89

../_images/pane-location-log.jpg

Gaia Sky Documentation

– Debug mode

System information panel

Gaia Sky has a built-in debug information panel that provides a lot of good information on the current system and is

hidden by default. You can bring it up with ctrl + d, or by ticking the Show debug info check box in the System tab
of the preferences dialog.

By default, the system information panel is collapsed.

Fig. 57: Collapsed system information panel, showing the current frame rate (green) and the frame time (white). The
small [+] icon to the bottom expands the panel.

You can expand it with the [+] symbol to get additional information.

Fig. 58: Expanded system information panel, displaying the graphics device, system memory, graphics memory, loaded
objects, LOD nodes and SAMP status, additionally to the frame rate and time.

As you can see, it contains information on the current graphics device, system and graphics memory, the amount of
objects loaded and on display, the octree (if a LOD dataset is in use) or the SAMP status.

Additional debug information can be obtained in the system tab of the help dialog (? or h).

90 Chapter 1. Contents

Gaia Sky Documentation

Debug mode

Gaia Sky includes a mode where more information is printed in the standard output (and the log files) to help locate
and identify possible problems. This is called debug mode.

In order to run Gaia Sky in debug mode, you need to launch it from the command line (your terminal application of
choice in Linux or macOS, PowerShell or cmd in Windows) using the -d or --debug flags.

On Linux or macOS, fire up your terminal, navigate to your Gaia Sky installation directory, and run:

./gaiasky --debug

On Windows, open PowerShell, navigate to your Gaia Sky installation directory, and run:

.\gaiasky.exe --debug

You will be able to see the log printed out in the terminal window. You can also recover the log files if you need to.
More info in the logs section.

1.4.12 Camera paths

Gaia Sky offers the possibility to record camera paths out of the box and later play them back. These camera paths are
saved in a .gsc (for Gaia Sky Camera) file in $GS_DATA/camera (see folders).

Contents

• Camera paths

– Camera path file format

– Camcorder

– Recording camera paths

∗ Frame rate

– Keyframes editor

∗ Keyframes file format

∗ Creating and editing keyframes

∗ Adding keyframes

∗ Keyframes list

∗ Playback controls

∗ Export keyframes to camera paths

∗ Keyframes preferences

∗ Export keyframes with OptFlowCam

– Playing camera paths

1.4. User manual 91

Gaia Sky Documentation

Camera path file format

The format of the .gsc files is pretty straightforward. It is a comma- or white space-separated text file (both are
supported), each row containing the state of the camera and the time for a given frame. The state of the camera
consists of 9 double-precision floating point numbers, 3 for the position and 3 for the direction vector and 3 for the up
vector. Lines starting with the character ‘#’ are ignored (with the exception of the frame rate annotation).

The first line in a camera path file may contain the target frame rate. If so, it should look like this:

#fps 60.0
#time,pos_x,pos_y,pos_z,dir_x,dir_y,dir_z,up_x,up_y,up_z
2021-12-03T10:15:30Z,17.663479293630523,7.669932047249439,-147.39800210363168,0.
→˓8908469033686479,0.15523508799939112,-0.42695885306703063,-0.15546522466942284,0.
→˓9872364428222099,0.03456544346939234
2021-12-03T12:15:30Z,17.66336523250385,7.669924111844091,-147.39824473603434,0.
→˓8930812247239476,0.15539061859390402,-0.4222081023601746,-0.15543885339145308,0.
→˓9872410377214266,0.03455280444582746
[...]

In that case, when the camera file is played back, the frame rate is automatically detected and used.

As for the content, the reference system used for positions and directions is explained in the Internal reference system
section. The units are 1 * 10−9𝑚.

The format of each row is as follows:

• time, which may be in one of these formats:

– long integer, defined as the number of milliseconds since epoch, 1970-01-01T00:00:00Z (UTC).

– ISO-8601 date string that contains an instant in UTC, like ‘2011-12-03T10:15:30Z’.

• 3x double-precision float – [px, py, pz] position of the camera.

• 3x double-precision float – [dx, dy, dz] direction vector of the camera.

• 3x double-precision float – [ux, uy, yz] up vector of the camera.

Gaia Sky provides two ways to record camera paths: real time recording and keyframes. Keyframes are dealt with in
the next sub-section. Here we look at the real time recording of camera paths using the integrated camcorder.

Camcorder

The camcorder is located at the top of the camera pane. It offers buttons to do the following actions:

• / – start and stop recording a camera path. When the REC button is gray, the camcorder is not

recording. Press it to start recording a new camera path. When the camcorder is recording, the REC button
is red. Press it to stop the current recording. When a recording is stopped, it is automatically saved to a file in
the $GS_DATA/camera directory. The file name is auto-generated.

• – open the keyframes editor.

• – play a camera path file.

92 Chapter 1. Contents

Gaia Sky Documentation

Recording camera paths

In order to start recording the camera path, click on the REC button next to the Camera section title in the GUI

Controls window. The REC button turns red, , which indicates the camera is being recorded.

Hint: You can’t record camera paths while the camcorder is in playing mode.

In order to stop the recording and write the result to a file, click again on the REC button. The button turns
grey and a notification pops up indicating the location of the camera file. Camera files are by default saved in the
$GS_DATA/camera directory (see folders).

Frame rate

Mind the FPS! The camcorder stores the time, position and orientation of the camera every frame. It is important that
recording and playing back are done with the same (stable) frame rate.

To set the target recording frame rate, edit the Target FPS field in the camcorder settings of the preferences window.
This makes sure the camera path is recorded using the target frame rate.

Camera path files are annotated with the target frame rate In order to play back the camera file at the right frame rate.
When the frame rate is in the camera file, the playback system automatically uses it.

Keyframes editor

The keyframe editor offers the possibility to create keyframes at specific positions from which the camera file will be

generated. In order start creating a keyframed camera path, click on the REC button in the camera pane of the
control panel (marked with a red arrow in the screenshot below). A new window will pop up from which you’ll be able
to create and manage the keyframes.

Keyframes file format

Keyframes can be saved and loaded to and from .gkf files using the keyframes file format. These files only contain

the information on the keyframes themselves. Once the keyframes have been created, they can be exported to a
.gsc camera path file. Both keyframe files and camera path files are stored by default in the $GS_DATA/camera folder
(see folders).

The keyframes file format is a text format with comma-separated values. Lines starting with ‘#’ are ignored.. It contains
a line for each keyframe. Each line has the following columns:

• double-precision float – keyframe duration since the last keyframe, in seconds. The duration of the first
keyframe must be 0.0.

• simulation time of the keyframe, which may be in one of these formats:

– integer, defined as the number of milliseconds since epoch, 1970-01-01T00:00:00Z (UTC).

– ISO-8601 date string that contains an instant in UTC, like ‘2011-12-03T10:15:30Z’.

• 3x double-precision float – [px, py, pz] position of the camera in this keyframe.

• 3x double-precision float – [vx, vy, vz] direction of the camera in this keyframe.

1.4. User manual 93

Gaia Sky Documentation

• 3x double-precision float – [ux, uy, uz] up vector of the camera in this keyframe.

• OPTIONAL: 3x double-precision float – [tx, ty, tz] position of the camera target, or point of interest, for
this keyframe. This vector is only present if the camera was in focus mode when the keyframe was created or
modified.

• integer – seam mark. This is 1 if the keyframe is a seam, and 0 otherwise.

Creating and editing keyframes

Fig. 59: Creating a keyframed camera path around Gaia. To the bottom-left, we see the keyframes editor window with
some keyframes. The red arrow points to the button used to launch the keyframes editor.

A visual representation of keyframes is displayed in the 3D world (see screenshot above) as lines (splines, orientations,
etc.) and points (keyframe locations). The colors are as following:

• Yellow lines – linear interpolation paths between keyframes.

• Green lines – spline paths (either B-Splines or Catmull-Rom splines) between keyframes. They represent the
true camera position. If the position interpolation is set to linear in the keyframes settings, the green lines
coincide with the yellow lines. If the position interpolation is set to Catmull-Rom splines, the green line should
hit every keyframe position perfectly. If the position interpolation is set to B-splines, the green line should only
hit perfectly the path start and end points.

• Red lines – for each keyframe, the red line represents the camera direction vector.

• Blue lines – for each keyframe, the blue line represents the camera up vector.

• Green points – represent keyframe locations for keyframes which are not currently selected.

• Magenta points – represent the keyframe that is currently selected and acts as a camera focus, if any.

94 Chapter 1. Contents

Gaia Sky Documentation

The keyframe visual representation is only displayed when the visibility of keyframes in enabled, so make sure that the

visibility of Keyframes is on (you can use the Keframe visuals button in the keyframes editor directly).

Keyframes can be selected and dragged with the right mouse button. The currently selected keyframe is highlighted
in the keyframes list and also in the scene, using a magenta color. Here are the basic controls:

• Right mouse – select keyframes (click) and move them around (drag).

• Shift + Right mouse – drag to rotate the keyframe orientation around the up vector (in blue).

• Ctrl + Right mouse – drag to rotate the keyframe orientation around the direction vector (in red).

• Alt + Right mouse – drag to rotate the keyframe orientation around the perpendicular to the up and the direction
vector (not represented in the scene).

Adding keyframes

In order to add a new keyframe, click on the Add keyframe at the end button. The new keyframe will be created
after the current one (if any), and with the current camera state (position, orientation). If the camera is in focus mode,
the keyframe name will appear in yellow, and the keyframe will have a target, or point of interest. See the OptFlowCam
export section for more information.

The keyframe is also created with as many seconds after the previous keyframe as stated in the Seconds after prev. text
field, and with the name given in the Name (optional) text field. If no name is entered, the default name of “Keyframe
x” is used, where x is a monotonically increasing integer.

Keyframes list

To the right of the keyframes editor is the keyframes list. It is a list of keyframes with their properties, along with some
buttons to perform some actions. The list is sorted top-to-bottom in the same order as they are in the path. Each entry
in the list has the following elements, in order, left to right:

• – move the keyframe up in the list. This moves the keyframe one position to the left in the path.

• – move the keyframe down in the list. This moves the keyframe one position to the right in the path.

• Keyframe time – the time of the keyframe relative to the first one, in seconds. The first keyframe in the list
always has the time 000.00. By default, keyframes are created 1.0 seconds after the previous one. Left click on
the green keyframe time label to edit it on the fly. Once the edition is done, press Enter to persist.

• (Frame number) – the frame number relative to the first keyframe. This is just the keyframe time times the target
FPS (defined in the keyframe preferences).

• – hover over this icon to see the simulation time attached to this keyframe.

• – when this icon and the keyframe name are in yellow color, the keyframe has a target position (also referred
to as ‘point of interest’). A keyframe has a target only when it was created when the camera was in focus mode.
In that case, the keyframe target is the position of the camera focus object at the time. Targets are used only by
the OptFlowCam export function. Refer to that section for more information.

• Keyframe name – the name of the keyframe. By default, this will be “keyframe x”, where x is a monotonically
increasing integer number in the keyframes list, starting at 1. Left click on the keyframe name label to edit it
on the fly. As with the target icon, the keyframe name appears in yellow if the keyframe has a target position

1.4. User manual 95

Gaia Sky Documentation

(point of interest). Targets are used only by the OptFlowCam export function. Refer to that section for more
information.

• – go to the keyframe. Puts the camera in the state specified by the keyframe.

• – set keyframe to the current camera state. This allows to modify the given keyframe by setting it to the
current state of the camera (including position, orientation and target, if any).

• – mark the keyframe as seam. In case the spline interpolation method is chosen, this will break the spline path.

• – add a new keyframe after this one, interpolating position, orientation and time with the next one. If the two
keyframes have a target, the target position is also interpolated.

• – remove the keyframe.

Playback controls

Below the keyframes list is a series of playback controls and a timeline slider. The slider is annotated with the current
frame, and can be used to position the camera at any location in the path in real time. No need to export the camera
path.

• Beginning – Move to the beginning of the timeline.

• Step back – Step one frame backward.

• Play/pause – Play or pause the camera path.

• Step forward – Step one frame forward.

• End – Move to the end of the timeline.

Export keyframes to camera paths

To the top of the keyframes window there are a few buttons to load, export and save keyframes projects.

• Open. . . – load a new .gkf keyframes file. The button opens a file picker in the default camera directory
($GS_DATA/camera, see system directories).

• Save. . . – save the current keyframes to a keyframes file .gkf in $GS_DATA/camera. You can choose the
file name, but not the directory. If another file with the same name exists, a unique file name is generated from
the given one.

• Export. . . – export the current project to a camera path file .gsc. Optionally, the OptFlowCam method can
be used to export. The export process uses the settings defined in the kefyrame preferences. You can choose the
file name, but not the directory. If another file with the same name exists, a unique file name is generated from
the given one.

• Normalize – recompute all keyframe times so that speed is constant. The total length and distance are
unaltered.

• Preferences – see next section, Keyframes preferences.

96 Chapter 1. Contents

Gaia Sky Documentation

Keyframes preferences

The Preferences button (lower right in the Keyframes window) opens a window which contains some settings related
to the keyframes system:

• Target FPS – the target frame rate to use when generating the camera file from the keyframes.

• Interpolation type – method used to interpolate between positions (orientations are always interpolated using
quaternion interpolation). The time is always interpolated linearly to prevent unwanted speed-ups and slow-
downs. Two types of interpolation are available:

– Catmull-Rom splines – produce smoothed paths which hit every keyframe. In this mode, keyframes can
be seams . Seam keyframes break up the path into two sections, so that two splines will be used ending
and beginning at the keyframe.

– B-splines – produce smoothed paths which do not hit every keyframe. In this mode, keyframes can be
seams . Seam keyframes break up the path into two sections, so that two splines will be used ending and
beginning at the keyframe.

– Linear interpolation – keyframe positions are joined by straight lines. In this mode, the yellow and green
lines above are the same.

Export keyframes with OptFlowCam

Gaia Sky includes the option to use the OptFlowCam method1 to export the keyframes to camera path files. This
method works very well in smoothing paths which span over long distance ranges and extremely varying scales.

Fig. 60: The keyframes export window contains a check box to activate the OptFlowCam post-processing.

A few caveats need to be taken into account to use this functionality:

• The OptFlowCam processing is implemented as an external Python script, so a local installation of Python 3.x
must be in place and accessible via the operating system. NumPy is also required. Typically, once Python is
installed, you can install NumPy by running pip3 install numpy in a terminal. In some cases, if the Python
environment is externally managed, you may need to install it via your package manager (for instance, in Arch
Linux you would do pacman -S python-numpy). The Flatpak version of Gaia Sky already includes Python
and NumPy.

– Install Python on Windows.

– Install Python on macOS.
1 Piotrowski, Motejat, Roessl, Theisel. “OptFlowCam: A 3D-Image-Flow-Based Metric in Camera Space for Camera Paths in Scenes with

Extreme Scale Variations”, Computer Graphics Forum, 2024 (10.1111/cgf.15056), link.

1.4. User manual 97

https://livelyliz.github.io/OptFlowCam/
https://python.org
https://www.python.org/downloads/windows/
https://www.python.org/downloads/macos/
https://diglib.eg.org:443/handle/10.1111/cgf15056

Gaia Sky Documentation

– Install Python on Linux: use the package manager provided by your distribution.

• The technique works best if every keyframe has a target or point of interest (see sections above for more
information), so make sure that all your keyframes are created when the camera is in focus mode. Otherwise, a
default distance-to-target of 500.000 Km is assumed.

• Note that the green line visually indicating the camera path is not respected in this mode. Only the keyframes
themselves are guaranteed to be hit, but not so the interpolated positions between them.

• Following up on the previous point, the method is not interactive, and only kicks in at export time. Do not use
the visual path lines for guidance, as they are not updated with this method in real time.

Playing camera paths

In order to play a camera file, click on the PLAY button at the top of the camera pane. A file picker dialog opens,
where you can select the camera path file to play. The file picker opens by default in the $GS_DATA/camera folder (see
folders).

You may also combine the camera file playback with the frame output system to save each frame as an image file to
disk during playback. To do so, enable the Activate frame output automatically checkbox in the preferences dialog as
described in the Camcorder section.

Hint: You can’t play camera paths while the camcorder is in recording mode.

Camera paths are recorded at a fixed frame rate. Starting in version 3.6.1, these files are annotated with the target
frame rate, so that the player automatically uses it.

In previous versions of Gaia Sky, however it was necessary to manually cap the frame rate to the target frame rate. To
do so, see the graphics configuration section.

1.4.13 Settings and configuration

Gaia Sky can be configured using the on-screen UI and the preferences window. Bring up the preferences window by

clicking on the preferences icon in the Controls pane or by pressing p.

Some features are not exposed in the preferences window or UI, so you may need to dive deep into the configuration
file section to modify them.

Contents

• Settings and configuration

– Graphics settings

∗ Resolution and mode

∗ Visual settings

– Scene settings

– Interface settings

– Performance

– Controls

98 Chapter 1. Contents

Gaia Sky Documentation

– Screenshots

– Frame output

– Camcorder

– Panorama mode

– Planetarium mode

– Data

∗ Gaia

– System

Graphics settings

The Graphics settings tab in the preferences window contains most of the graphics settings in Gaia Sky.

Fig. 61: The graphics settings in Gaia Sky.

1.4. User manual 99

_images/prefs-graphics.jpg

Gaia Sky Documentation

Resolution and mode

You can find the Resolution and mode configuration under the Graphics tab.

• Display mode – select between fullscreen mode and windowed mode. In the case of full screen, you can choose
the resolution from a list of supported resolutions in a drop down menu. If you choose windowed mode, you can
enter the resolution you want. You can also choose whether the window should be resizable or not. In order to
switch from full screen mode to windowed mode during the execution, use the key F11.

• V-sync – enable v-sync to limit the frame rate to the refresh rate of your monitor. In some cases this may help
reducing tearing.

• Maximum frame rate – it is possible to set a maximum frame rate by ticking this checkbox and entering a
positive integer value. The frame rate will be capped to that value.

Visual settings

• Graphics quality – This setting governs the size of the textures, the complexity of the models and
also the quality of some graphical effects like the star glow or the lens flare. Here are the differences:

• Low – very low resolution textures, mostly 1K (1024x512), and fewer sample counts for the visual
effects than in higher quality settings. Low-fidelity Milky Way model.

• Normal – moderately low resolution textures (2K when available). The graphical effects use a
reasonable amount of quality for nice visuals without compromising the performance too much.
Medium-fidelity Milky Way model.

• High – high-resolution 4K (3840x2160) textures. Graphical effects use a large number of samples.
High-fidelity Milky Way model. This may be taxing even on good graphics cards.

• Ultra – very high resolution textures (8K, 16K, etc.). Ultra-high-fidelity Milky Way model.

• Antialiasing – In the Graphics tab you can also find the antialiasing configuration. Applying an-
tialiasing removes the jagged edges of the scene and makes it look better. However, it does not come
free of cost, and usually has a penalty on the frames per second (FPS). There are four main options,
described below. Find more information on antialiasing in the Antialiasing section.

• No Antialiasing – if you choose this no antialiasing will be applied, and therefore you will probably
see jagged edges around models. This has no penalty on either the CPU or the GPU. If want you
enable antialiasing with override application settings in your graphics card driver configu-
ration program, you can leave the application antialiasing setting to off.

• FXAA – Fast Approximate Antialiasing – This is a post-processing antialiasing filter which is very
fast and produces very good results. The performance hit depends on how fast your graphics card
is, but it is generally low. Since it is a post-processing effect, this will work also when you take
screenshots or output the frames. As of Gaia Sky 2.2.5, FXAA is activated by default. Here is
more info on FXAA.

• NFAA – Normal Field Antialiasing – This is yet another post-processing antialiasing technique. It
is based on generating a normal map to detect the edges for later smoothing. It may look better on
some devices and the penalty in FPS is small. It will also work for the screenshots and frame outputs.

• Point cloud style – the point cloud rendering style. This affects the rendering of all particle datasets
(Oort cloud, SDSS, etc.), stars (including Hipparcos and all Gaia-based catalogs, as well as variable
stars) and asteroids.

• Quality billboards – in this mode, the data points are rendered as billboards (quads composed of
two triangles each which always face the camera) using instancing to save VRAM. This is generally
the faster option with modern GPUs. This mode produces geometrically correct stars and particles,

100 Chapter 1. Contents

https://en.wikipedia.org/wiki/Fast_approximate_anti-aliasing

Gaia Sky Documentation

which means that they have consistent scene orientations in cubemap mode, eliminating the seams
completely. Use this when using the panorama or planetarium modes.

• Legacy (point primitives) – This is the mode used in Gaia Sky before 3.1.7. It uses point GL
primitives (GL_POINTS) to render point clouds. The points are rasterized in image space, so they are
not consistently projected across the whole field of view. Otherwise, this mode is fine for the regular
use of Gaia Sky, and tends to perform better on very old hardware.

• Line style – select the line rendering back-end.

• Quality lines – use geometry shaders to generate polyline quad-strips, resulting in much better-
looking and more consistent lines. Trajectories and orbits are also sent to the GPU once, and updated
periodically. The use of geometry shaders may have a slight impact on performance with some
graphics cards, but it is typically unnoticeable.

• Legacy (line primitives) – use the line primitives offered by the graphics driver. Since the lines are
shaded by the driver implementation, they may differ depending on the graphics card. Trajectories
and orbits are sent to the GPU in a buffer only once, the rest of the custom lines are computed on the
CPU and sent over each frame.

• Lens flare – set the strength of the lens flare effect. Set to 0 to disable the lens flare. There are
currently three different lens flare options, but they need to be chosen directly in the configuration
file. See this section for more information.

• Bloom effect – this slider controls the amount of bloom (light bleeding from bright to dark areas) to
apply to the scene. Bring it all the way down to zero to disable bloom altogether.

• Unsharp mask factor – this slider controls the amount of sharpening to apply to the scene with
the unsharp mask effect. Increasing the unsharp mask factor makes the visuals sharper but possibly
introduces aliasing and visual artifacts. Bring it all the way down to zero to disable the unsharp mask
effect.

• Chromatic aberration amount – the amount of chromatic aberration to apply to the image. Set to
0 to disable the chromatic aberration effect.

• Film grain – the amount of film grain to apply to the image. Set to 0 to disable the film grain effect.

• Fade time [ms] – set the time it takes for objects to fade in and out when their visibility is modi-
fied, either via the “Object visibility” pane or using the individual visibility toggle. This value is in
milliseconds.

• Elevation (terrain height) – choose the way elevation (also referred to as terrain height) is repre-
sented in Gaia Sky. This only works when the objects has a height map (texture, cubemap or SVT)
attached, and also a height scale. If the object has a normal map, normals are computed from this
map. Otherwise, the height texture is used to compute the normals.

• Regular vertex displacement – displace the object’s vertices along the normal vector to represent
height. Note that a heightScale value, indicating the extent of the displacement with an elevation
multiplier of 1, is needed for this to work correctly.

• Terrain tessellation – use geometry subdivision by tessellation for large bodies (planets and moons).
For bodies with a rough size greater than about 500 Km, tessellation subdivision is used before
displacing the vertices. This may be taxing on integrated or old graphics cards. Disable if frame rate
is low. Note that a heightScale value, indicating the extent of the displacement with an elevation
multiplier of 1, is needed for this to work correctly.

• None – do not represent elevation.

• Shadows – enable or disable shadows, and choose their properties.

• Shadow map resolution – choose the resolution of the shadow map textures to use.

1.4. User manual 101

Gaia Sky Documentation

• # shadows – control the number of objects with self-shadows at any given time in the scene.

• Image levels – control the image levels

• Brightness – overall brightness of the image.

• Contrast – overall contrast of the image.

• Hue – hue value of the image.

• Saturation – saturation value of the image.

• Gamma correction – gamma correction value of the image. This should be calibrated with your
monitor.

• HDR tone mapping type – tone mapping algorithm to use. Choose Automatic to use a real-time
adjusting mode based on the overall lightness of the image. All the others are static algorithms.

• Virtual textures – this section contains settings related to the sparse virtual texturing system in Gaia
Sky.

• Cache size – use this slider to determine the cache size, in tiles. The size of each tile
depends on the first virtual texture dataset loaded. Gaia Sky supports only multiple virtual
textures in the same scene when all have the same tile size. You can adjust this slider to
modify the size of the texture used as cache. The changes apply only the next time you
start Gaia Sky.

• Experimental – this section contains experimental graphics options:

• Post-processing re-projection – use a post-processing shader to re-project the final image,
with a varied choice of projection algorithms:

– Disabled – no re-projection.

– Default (simple fisheye) – a simple fisheye projection algorithm.

– Accurate (no full coverage) – a more accurate projection, but has a coverage of 180∘,
which is not available with the perspective camera.

– Stereographic (screen fit) - stereographic projection with a screen fit.

– Stereographic (long edge fit) - stereographic projection with a long axis fit.

– Stereographic (short edge fit) - stereographic projection with a short axis fit.

– Stereographic (180 fit) - stereographic projection with a fit to a filed of view of 180∘.

– Lambert (screen fit) - Lambert projection with a screen fit.

– Lambert (long edge fit) - Lambert projection with a long axis fit.

– Lambert (short edge fit) - Lambert projection with a short axis fit.

– Lambert (180 fit) - Lambert projection with a fit to a filed of view of 180∘.

– Orthographic (screen fit) - orthographic projection with a screen fit.

– Orthographic (long edge fit) - orthographic projection with a long axis fit.

– Orthographic (short edge fit) - orthographic projection with a short axis fit.

– Orthographic (180 fit) - orthographic projection with a fit to a filed of view of 180∘.

• Dynamic resolution – in this mode, the resolution of the back-buffer is adapted depending
on the frame rate to avoid too drastic slow-downs. The dynamic resolution is adjusted
according to some predefined back-buffer scale factors: 1, 0.85 and 0.75. The resolution of
the back-buffer is scaled by the next value if the frame rate is below 30, and to the previous

102 Chapter 1. Contents

Gaia Sky Documentation

level if it is over 60. This should provide smoother frame-rates on older hardware, and in
some GPU demanding situations.

• Back-buffer scale – resolution scale factor to apply to the render frame buffer, effectively
rendering the scene at a lower or higher resolution in the background, trading off perfor-
mance and visual fidelity. This setting is disabled when dynamic resolution is enabled.

– Set the back-buffer scale to less than one to render the image with a lower resolution,
increasing performance and lowering visual fidelity, and upscale it to the window size.

– Set the back-buffer scale to a value greater than one to render the image with a reso-
lution higher than that of the current window, decreasing performance and increasing
visual fidelity, and downscale it to window size.

• Index of refraction – set the index of refraction of the sphere in orthosphere view mode.
The orthosphere is filled up with a material with the given refraction index, with light rays
bending and scattering according to their angles of incidence.

• Screen space reflections – activate SSR (screen space reflections). In this method, a post-
process step traces the reflections for each reflective surface in the image. This has an
impact on performance but produces nice-looking reflections on metallic surfaces. If this
is off, it falls back to cubemap reflections with a default sky box of the milky way. The
default location of the sky box is $GS_DATA/tex/skybox/gaiasky.

Fig. 62: A rendering of Gaia with SSR activated.

• Motion blur – choose the amount of camera motion blur to apply to the scene. Set to 0
to disable motion blur. Gaia Sky implements what is know as camera motion blur, where
the scene is blurred only depending on the camera motion. Object motion blur is not
implemented at the moment.

1.4. User manual 103

_images/ssr_gaia.jpg

Gaia Sky Documentation

Scene settings

The Scene settings tab in the preferences window contains settings concerned with the scene configuration as a
whole and its objects.

• Recursive grid – configure the recursive grid object.

– Origin – choose the origin of the recursive grid, either the reference system origin or the focus object.

– Origin projection lines – if the origin is set to the reference system origin, this check box controls whether
projection lines on the fundamental plane and to the object are drawn.

• Eclipses – enable and configure the real-time eclipse representation. For more information, visit the eclipse
representation section.

– Enable eclipse representation – enable or disable the real time in-scene eclipse representation.

– Enable outlines for umbra and penumbra – enable or disable outlines for the umbra regions (red) and
the penumbra region (yellow) during eclipses.

• Stars – configure aspects tied to stars.

– Star glow over objects – enable the post-processing effect to render the star light effect that spills over
occluding objects.

– Render star spheres – enable the rendering of stars as spheres.

Interface settings

The Interface settings tab in the preferences window contains some configuration options related to the user-facing
interface, like the language, scale factor, object cross-hairs and pointer guides.

• Language – choose the language of the interface. Changes are applied immediately after clicking on Save
preferences.

• Interface theme – select the UI skin or theme. The available themes are:

– dark-green, black and green theme.

– dark-blue, black and blue theme.

– dark-orange, orange and blue theme.

– bright-green, a bright theme with greenish tones.

– night-red, a red theme for low-light environments.

• UI scale factor – scale the user interface up or down. This slider applies a fractional scaling factor to all user
interface elements (not only the fonts!). The scaling is takes effect on the fly when you click on the Save prefer-
ences button. You can also apply the scaling immediately, without closing the preferences dialog, by clicking on
the Apply button next to the slider.

• Minimap size – adjust the base size of the minimap frame buffers. You can bring up the minimap by clicking

on the minimap icon or by pressing Tab.

• Preferred distance units – choose between parsecs and light years to use as default top units. These apply to
the focus info pane (bottom-right), as well as in the projection lines of the recursive grid.

• Display mode change information pop-up – enable or disable the appearance of the information pop-up dialog
when one of the special modes (panorama, planetarium, stereoscopic, game) is activated.

104 Chapter 1. Contents

Gaia Sky Documentation

• Crosshair – adjust the visibility of the different crosshairs and markers.

– Focus marker – mark the location of the current focus object.

– Closest object marker – mark the location of the closest object to the camera.

– Home object marker – mark the location of the home object, defined in the configuration file.

• Pointer guides – vertical and horizontal guides spanning the full window marking the position of the pointer.

– Display pointer guides – enable or disable the pointer guides.

– Display pointer coordinates – display the coordinates of the pointer, either sky coordinates (equatorial),
or latitude and longitude on a planet. The coordinates are shown at the bottom and right edges of the screen,
aligned with the pointer.

– Color – choose the color of the pointer guides.

– Width – choose the width of the pointer guide lines.

Performance

The Performance settings tab in the preferences window contains a few settings that impact the performance of
the application.

• Enable multithreading – enable using multiple threads.

• Number of threads – adjust the maximum number of threads to use.

• Smooth transitions between levels of detail – fade the contents of octree nodes as they approach the visibility
threshold. Improves graphical fidelity and removes pop-ins.

• Draw distance – adjust the solid angle threshold for when octree nodes become visible. See the draw distance
section for more information.

More detailed info on performance can be found in the performance section.

Controls

The Controls tab in the preferences window contains information about the keyboard, mouse and gamepad controls,
and some tools to edit the gamepad mappings.

You can see the key-action bindings in the controls tab. Controls are only editable by modifying the keyboard.
mappings file inside the mappings folder of your installation. Check out the Controls documentation to know more.

Screenshots

The Screenshots tab in the preferences window contains settings on the screenshots susbsystem.

Hint: Take screenshots any time by pressing F5.

There are two screenshot modes available:

• Simple – the classic screenshot of what is currently on screen, with the same resolution.

• Advanced – where you can define the output resolution of the screenshots. Note that advanced mode requires
the scene to be re-rendered at the target resolution, so it is slower.

1.4. User manual 105

Gaia Sky Documentation

Fig. 63: The controls settings in Gaia Sky.

You can also select the output format (either JPG or PNG) and the quality (in case of JPG format) by using the Image
format select box and the Quality slider.

These are the controls in this tab:

• Screenshots save location – choose the location on disk where the screenshots are to be saved.

• Mode – choose the screenshot mode, either Simple or Advanced (see above).

• Screenshots size – adjust the resolution for the Advanced screenshots mode.

• Image format – choose the save format, either JPG or PNG.

• Quality – when JPG is selected as an image format, use this slider to control its quality setting.

Frame output

The Frame output tab in the preferences window contains settings related to the frame output system.

This feature enables the exporting and saving of every frame as a JPG or PNG image directly to disk. This is useful to
produce videos. In the frame output tab you can select the frame save location, the image prefix name, the target frame
rate, the mode and the output image resolution (in case of Advanced mode). You can also select the output format
(either JPG or PNG) and the quality (in case of JPG format) by using the Image format select box and the Quality slider.
Finally, there is a button to reset the integer sequence number.

Note: Use F6 to activate the frame output mode and start saving each frame as an image. Use F6 again to deactivate
it.

When Gaia Sky is in frame output mode, it does not run in real time but it adjusts the internal clock to meet the
configured target FPS (frames per second, or frame rate). Take this frame rate into account when you later use your
favourite video encoder (ffmpeg) to convert the frame images into a video.

106 Chapter 1. Contents

_images/controls.jpg
https://www.ffmpeg.org/

Gaia Sky Documentation

Here is a list of the available controls:

• Frame save location – choose the location on disk where the still frames are to be saved.

• Frame name prefix – choose the prefix to prepend to the still frame files.

• Target FPS – target framerate of the frame output system.

• Mode – choose the frame mode, either Simple or Advanced (see above).

• Size of frames – adjust the resolution for the Advanced mode.

• Reset sequence number – resets the integer frame sequence number of the current session to 0. After clicking
this, the frame sequence will start over from 0, overwriting any previously existing frames with the same name!
This control is useful if you need to re-capture frames.

Camcorder

The Camcorder tab in the preferences window contains settings related to the camera path recording system.

The following settings are available:

• Target FPS – set the desired frames per second to capture the camera paths. If your device is not fast enough
in producing the specified frame rate, the application will slow down while recording so that enough frames are
captured. Same behaviour will be uploading during camera playback.

• Activate frame output automatically – enable automatic frame recording during playback. This will auto-
matically activate the frame output system (see Frame output) during a camera file playback.

• Keyframe preferences – bring up a new dialog to adjust some preferences of the camera keyframe system. See
this section for more information.

Panorama mode

The Panorama mode tab in the preferences window contains settings related to the panorama mode.

The following settings are available:

• Cubemap side resolution – define the cube map side resolution for the 360 mode. With this mode a cube map
will be rendered (six individual scenes in directions+𝑋 ,−𝑋 ,+𝑌 ,−𝑌 ,+𝑍,−𝑍) and then it will be transformed
into a flat image using an equirectangular projection. This allows for the creation of 360 (VR) videos.

Planetarium mode

The Planetarium mode tab in the preferences window contains settings related to the planetarium mode.

The following settings are available in the planetarium mode section:

• Aperture angle [°] – adjust the aperture angle to suit your dome setup. Can be as high as 360 degrees.

• Focus angle from zenith [°] – the angle from the zenith to put the focus of the view.

• Cubemap side resolution – the planetarium mode also works with the cube map system used in Panorama mode,
so here you can also adjust the cubemap side resolution.

1.4. User manual 107

Gaia Sky Documentation

Gaia Sky also supports the spherical mirror projection by defining a warp mesh file:

• Select warp mesh file – select a warp mesh file, which contains the distortion data to compensate for the non-
planar nature of the projection surface. More information in the spherical mirror projection section.

Data

The Data tab in the preferences window contains settings related to the data used in Gaia Sky.

From this tab, you can bring up the dataset manager window to download new datasets, and enable and disable the
ones that you have available locally. To bring it up, click on the Dataset manager button.

Fig. 64: The data settings in Gaia Sky.

There is a setting available in the data tab:

• Use high accuracy positions – enable high accuracy positions, which uses all terms in the VSOPxx and other
ephemerides algorithms.

Gaia

• Gaia attitude – you have two options here:

– Real satellite attitude – takes a while to load but it uses the correct phase angles and parameters.
In this case, the planned attitude of Gaia is used. This may still diverge from the actual attitude of the
satellite.

– NSL – analytical implementation of the nominal attitude of the satellite. It behaves the same as the real
thing, but the direction to which the satellite is pointing is off.

108 Chapter 1. Contents

_images/prefs-data.jpg

Gaia Sky Documentation

System

The System tab contains preferences that affect the whole system, or items that do not fit anywhere else.

Fig. 65: The system settings in Gaia Sky.

• Show debug info – enable and disable the debug info using the Show debug info checkbox. When the debug
info is enabled, the program prints the frames per second and other useful information at the top-right of the
screen.

• Ask for confirmation on exit – whether to ask for confirmation when trying to close Gaia Sky or not.

• Shader disk cache – Gaia Sky implements an application-level shader disk cache that caches the binary, com-
piled shaders to disk to avoid re-compilation and save time. Most graphics drivers already implement this cache
at driver level, so this setting is off by default. If you notice that the shader compilation stage at startup is very
slow, you can try enabling this.

• Clear shader cache – use this button to completely clear the shader cache of Gaia Sky. This will remove all
cached binary shaders from the disk. The shaders will be re-cached in the next start up (only if the ‘Shader disk
cache’ checkbox is checked).

• Reset default settings – revert to the default settings. You will lose your current settings file and Gaia Sky will
need to be relaunched for the changes to take effect.

1.4. User manual 109

_images/prefs-system.jpg

Gaia Sky Documentation

1.4.14 Scripting

Gaia Sky exposes an API that can be accessed via Python scripts and via an HTTP server. In this section we focus
on the Python method. The API calls can be called from Python programs (scripts), that must be run with the system
Python interpreter. They connect to a gateway service offered by a running instance of Gaia Sky.

Contents

• Scripting

– Quick start

∗ Requirements

∗ Running a test script

– The Gaia Sky API

∗ Using the API remotely

∗ API documentation

– Writing scripts for Gaia Sky

∗ Backing up and restoring settings

∗ Logging to Gaia Sky and Python

∗ Method and attribute access

∗ Strict parameter types

∗ Loading datasets from scripts

∗ Camera transitions

∗ Synchronizing with the main loop

∗ Camera and scene runnables

∗ Overriding object coordinates provider

∗ More examples

– Running and debugging scripts

Quick start

If you just need some examples to get started, look up the test and showcase scripts in scripts folder of the project.

Requirements

In order to connect to the gateway server, you need a Python 3.5+ interpreter and the Py4J package. You can install it
with pip as a user package like this:

$ pip install --user py4j

You may also use your distribution or operating system package manager to install Py4J. Please, refer to your distribution
or operating system documentation for more information. Find more information on the library at the Py4J homepage.

110 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts
https://www.py4j.org/

Gaia Sky Documentation

Running a test script

Then, launch Gaia Sky, download this script, open a terminal window (PowerShell in Windows) and run:

$ python asteroids-tour.py

The directory from which you run the script does not matter. If all goes well Gaia Sky should be showing a nice tour
of the asteroids in the DR2 catalog.

Fig. 66: This script should produce results similar to this video

Have a look at the script. All lines which start with gs. are API calls which call methods in the Gaia Sky gateway
server. What are API calls, you ask? See next section.

The Gaia Sky API

The Gaia Sky API (here) contains many more calls to interact with the platform in real time from Python scripts or a
REST HTTP server. The API includes calls to:

• Add and remove messages and images to the interface,

• start and stop time, and change the time warp,

• add scene elements like shapes, lines, etc.,

• load full datasets in VOTable, CSV, FITS, or the internal JSON format,

• manage datasets (highlight, change settings, etc.),

• manipulate the camera position, orientation and mode,

• move the camera by simulating mouse actions (rotate around, forward, etc.),

• activate special modes like planetarium or panorama,

• create smooth camera transitions in position and orientation,

• change the various settings and preferences,

• back-up and restore the full configuration state,

• take screenshots, use the frame output mode.

1.4. User manual 111

https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/showcases/asteroids-tour.py
https://www.youtube.com/watch?v=LKGxyfg5iBY
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html

Gaia Sky Documentation

Using the API remotely

Gaia Sky provides a REST server that enables the remote execution of API calls over HTTP. This is described in the
REST server section.

API documentation

The only up-to-date API documentation for each version is in the interface header files themselves. Below is a list of
links to the different APIs.

• Latest API version

• Older API versions (javadoc).

Writing scripts for Gaia Sky

Gaia Sky uses the single-threaded model of Py4J. In order to connect to Gaia Sky from Python, import ClientServer
and JavaParameters, and then create a gateway and get its entry point. The entry point is the object you can use to
call API methods on. Since Gaia Sky uses a server per script, the gateway must be shut down at the end of the script
so that the Python program can terminate correctly and Gaia Sky can create a new server to deal with further scripts
listening to the Py4J port.

from py4j.clientserver import ClientServer, JavaParameters

gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True))
gs = gateway.entry_point

User code goes here
[...]

gateway.shutdown()

The JavaParameters(auto_convert=True) is not strictly necessary, but if you don’t use it you need to convert
Python lists to Java arrays yourself before calling the API.

Now, we can start calling API methods on the object gs.

Disable input
gs.disableInput()
Stop camera
gs.cameraStop()

Write welcome message
gs.setHeadlineMessage("Welcome to the Gaia Sky")
gs.setSubheadMessage("Explore Gaia, the Solar System and the whole Galaxy!")
[...]

Find lots of example scripts here.

112 Chapter 1. Contents

https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/
https://www.py4j.org/py4j_client_server.html
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts

Gaia Sky Documentation

Backing up and restoring settings

Typically, scripts modify various program settings when they run (camera speed, star brightness, field of view, etc.).
In order to leave Gaia Sky in the state it was before, scripts have the option to back up and restore the entire settings
state of Gaia Sky. To do that, the API includes a few calls to push and pull settings states from an internal LIFO stack:

• backupSettings() — push the current settings state to the settings stack.

• restoreSettings() — restore the top-most settings state from the settings stack so that they become immediately
effective. This call re-initializes the user interface of Gaia Sky, so be aware that the UI will be reset.

• clearSettingsStack() — clears the settings stack. Calling restoreSettings() after this will have no effect.

These calls can be used at the start and end of scripts to back up and restore the user settings, so that everything is left
unchanged after a script execution.

from py4j.clientserver import ClientServer, JavaParameters

gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True))
gs = gateway.entry_point

1. Back up settings before anything
gs.backupSettings()

2. Script does things and modifies the settings
[...]

3. Restore the settings backed up at point 1.
gs.restoreSettings()

gateway.shutdown()

Logging to Gaia Sky and Python

When printing messages, you can either log to Gaia Sky or print to the standard output of the terminal where Python
runs:

gs.print("This goes to the Gaia Sky log")
print("This goes to the Python output")

In order to log messages to both outputs, you can define a function which takes a string and prints it out to both sides:

def pprint(text):
gs.print(text)
print(text)

pprint("Hey, this is printed in both Gaia Sky AND Python!")

1.4. User manual 113

Gaia Sky Documentation

Method and attribute access

Py4J allows accessing public class methods but not public attrbiutes. In case you get objects from Gaia Sky, you can’t
directly call public attributes, but need to access them via public methods:

Get the Mars model object
body = gs.getObject("Mars")
Get spherical coordinates
radec = body.getPosSph()

DO NOT do this, it crashes!
gs.print("RA/DEC: %f / %f" % (radec.x, radec.y))

DO THIS instead
gs.print("RA/DEC: %f / %f" % (radec.x(), radec.y()))

Strict parameter types

Please, be strict with the parameter types. Use floats when the method signature has floats and integers when it has
integers. The scripting interface still tries to perform conversions under the hood but it is better to do it right from the
beginning. For example, for the API method:

double[] galacticToInternalCartesian(double l, double b, double r);

may not work if called like this from Python:

gs.galacticToInternalCartesian(10, 43.5, 2)

Note that the first and third parameters are integers rather than floating-point numbers. Call it like this instead:

gs.galacticToInternalCartesian(10.0, 43.5, 2.0)

Loading datasets from scripts

Gaia Sky supports data loading from scripts using the STIL data provider. It is really easy to load a VOTable file from
a script:

from py4j.clientserver import ClientServer, JavaParameters
gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True))
gs = gateway.entry_point

Load dataset
gs.loadDataset("dataset-name", "/path/to/dataset.vot")
Async insertion, let's make sure the data is available
gs.sleep(2)

Now we can play around with it
gs.hideDataset("dataset-name")

Show it again
gs.showDataset("dataset-name")

(continues on next page)

114 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

Shutdown
gateway.shutdown()

Find an example of how to load a star catalog from a script here. This one showcases how to load a dataset with generic
particles (only positions).

Additionally, you can also load JSON data files and dataset descriptors made for Gaia Sky (see the JSON dataset format
section).

Camera transitions

When writing scripts it is important to be able to transition the camera from one state to another. The camera state is
composed by the camera position and the orientation (direction and up vectors). In the API, we include a family of
calls named cameraTransition(. . .) (see here), which produce a transition from the current camera state, to the given
camera position and orientation, in a given number of seconds (optionally different for position and orientation).

Additionally, two more calls are available to create transitions only in position and only in orientation:

• cameraTransition(pos, dir, up, units, durationPos, smoothTypePos, smoothFactorPos, durationOri, smoothType-
Ori, smoothFactorOri, sync).

• cameraPositionTransition(pos, units, duration, smoothType, smoothFactor, sync).

• cameraOrientationTransition(dir, up, duration, smoothType, smoothFactor, sync).

For the rest of this subsection, we refer to the base cameraTransition(...) method.

Typically, when the transition must traverse large dynamic ranges of distances, it is necessary to smooth the transitions
by starting slow and finishing slow, or starting fast and finishing fast. To that effect, we have included a sub-family of
calls which include a smoothing type and factor for position and orientation. The transition duration is also separated
by position and orientation.

• API call: cameraTransition(pos, units, dir, up, posDuration, posSmoothType, posSmoothFac, oriDuration, oriS-
moothType, oriSmoothFac, sync).

Duration — posDuration and oriDuration are in seconds, and specify the duration for the interpolation in position
and orientation, respectively. They may be different, but the call will not return until the longest of the two has finished
(if sync is true).

Smoothing type — posSmoothType and orientationSmoothType determine the smoothing type. There are two
types: logistic sigmoid and logit (additionally, none skips the smoothing). The logistic sigmoid type starts and ends
slow, while the logit type starts and ends fast.

Check out this Graphtoy simulation. In it, 𝑓2 is the logistic sigmoid (yellow), and 𝑓3 is the logit type (green).

The full transition path is mapped to x:[0,1], and we use y:[0,1] given by the smoothing function to generate the
sampling.

Smoothing factor — posSmoothFactor and orientationSmoothFactor determine the smoothing factor. In lo-
gistic sigmoid the factor must be in [12, Inf]. In logit, the factor is in [0.09, 0.01]. You can use the Graphtoy utility
above to see the effect of the different factors. You can see and modify the expressions in the text fields to the top-right.

You can always find the target camera state values by putting the camera in the end position and orientation in Gaia
Sky, and running the get-cam-pos.py script (under assets/scripts/tests/):

$ python get-cam-pos.py

(continues on next page)

1.4. User manual 115

https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/tests/load-star-dataset-test.py
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/tests/load-particle-dataset-test.py
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraTransition(double%5B%5D,double%5B%5D,double%5B%5D,double)
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraTransition(double%5B%5D,double%5B%5D,double%5B%5D,double)
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraTransition(double%5B%5D,double%5B%5D,double%5B%5D,double)
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraPositionTransition(double%5B%5D,java.lang.String,double,java.lang.String,double,boolean)
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraOrientationTransition(double{[}{]},double{[}{]},double,java.lang.String,double,boolean)
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraTransition(double%5B%5D,java.lang.String,double%5B%5D,double%5B%5D,double,java.lang.String,double,double,java.lang.String,double,boolean)
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/script/IScriptingInterface.html#cameraTransition(double%5B%5D,java.lang.String,double%5B%5D,double%5B%5D,double,java.lang.String,double,double,java.lang.String,double,boolean)
https://graphtoy.com/?f1(x,t)=&v1=true&f2(x,t)=exp(x*12-6)/(1+exp(x*12-6))&v2=true&f3(x,t)=log((x)/(1-x))*0.09+0.5&v3=true&f4(x,t)=&v:w4=true&f5(x,t)=&v5=false&f6(x,t)=&v6=true&grid=1&coords=0.5,0.5,0.6671619613670133

Gaia Sky Documentation

Fig. 67: Smoothing types logistic sigmoid (in yellow) and logit (in green).

116 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

Camera position:
- Internal: [-5593.0417731364, 13008.1430225486, 1542.9688571213]
- Km: [-5593041773.1363697052, 13008143022.5486202240, 1542968857.1212708950]
- AU: [-37.3871749360, 86.9540651588, 10.3141097317]
- Light years: [-0.0005911850, 0.0013749619, 0.0001630919]
- Parsecs: [-0.0001812581, 0.0004215652, 0.0000500042]

Camera orientation:
- Direction: [0.3965101844, -0.9104556836, -0.1176865406]
- Up: [0.7060462888, 0.2205005155, 0.6729622283]

Then, you can create a transition from the current camera state, to the target camera state. Here we have used internal
units (first data line in the above snippet).

gs.cameraTransition([-5593.0417731364, 13008.1430225486, 1542.9688571213], # Position
"internal", # Units
[0.3965101844, -0.9104556836, -0.1176865406], # Direction
[0.7060462888, 0.2205005155, 0.6729622283], # Up
10.0, # Transition␣

→˓duration in position [s]
"logisticsigmoid", # Smoothing␣

→˓type in position
60.0, # Smoothing␣

→˓factor in position
7.0, # Transition␣

→˓duration in orientation [s]
"logisticsigmoid", # Smoothing␣

→˓type in orientation
12.0, # Smoothing␣

→˓factor in orientation
True # Sync
)

Synchronizing with the main loop

Sometimes, when updating animations or creating camera paths, it is necessary to sync the execution of scripts with
the thread which runs the main loop (main thread). However, the scripting engine runs scripts in separate threads
asynchronously, making it a non-obvious task to achieve this synchronization. In order to fix this, a new mechanism
has been added in Gaia Sky 2.0.3. Now, runnables can be parked so that they run at the end of the update-render
processing of each loop cycle. A runnable is a class which extends java.lang.Runnable, and implements a very
simple public void run() method.

Runnables can be posted, meaning that they are run only once at the end fo the current cycle, or parked, meaning
that they run until they stop or they are unparked. Parked runnables must provide a name identifier in order to be later
accessed and unparked.

Let’s see an example of how to implement a frame counter in Python using py4j:

from py4j.clientserver import ClientServer, JavaParameters, PythonParameters

class FrameCounterRunnable(object):
def __init__(self):

(continues on next page)

1.4. User manual 117

Gaia Sky Documentation

(continued from previous page)

self.n = 0

def run(self):
self.n = self.n + 1
if self.n % 30 == 0:

gs.print("Number of frames: %d" % self.n)

class Java:
implements = ["java.lang.Runnable"]

gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True),
python_parameters=PythonParameters())

gs = gateway.entry_point

We park a runnable which counts the frames and prints the current number
of frames every 30 of them
gs.parkRunnable("frame_counter", FrameCounterRunnable())

gs.sleep(15.0)

We unpark the frame counter
gs.unparkRunnable("frame_counter")

gateway.shutdown()

In this example, we park a runnable which counts frames for 15 seconds. Note that here we need to pass a
PythonParameters instance to the ClientServer constructor.

A more useful example can be found here. In this one, a polyline is created between the Earth and the Moon. Then, a
parked runnable is used to update the line points with the new positions of the bodies. Finally, time is started so that
the bodies start moving and the line positions are updated correctly and in synch with the main thread.

Camera and scene runnables

The Gaia Sky main loop updates first the camera position and orientation, and then updates the objects in the scene.
In order to maintain sufficient precision, the scene is floated at the position of the camera, meaning that the camera is
always effectively at the origin of coordinates, and the scene objects are moved around. This means that the effective
position of every objects in the scene at every frame depends on the position of the camera.

So far, we have seen the parkRunnable()method, which parks a runnable that runs only after the camera-scene update
cycle. However, sometimes we need to modify the positions of objects in the scene with respect to other objects. If we
use the current method, we will always be using the position in the last frame. However, we need to use the position in
the current frame, and we can do so by introducing two new park methods:

• parkCameraRunnable() — parks a runnable that runs after the camera has updated, but before the scene has
done so. Use this to fetch the predicted position of an object to have the position in the current frame. (see
fetchPredictedPosition()).

• parkSceneRunnable() — parks a runnable that runs after the camera and scene have updated. This is exactly
the same as the parkRunnable() we already know.

An example of this can be found here. It needs a couple of JSON data files (also in the repository).

118 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/showcases/line-objects-update.py
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/showcases/modify-object-position/modify-object-position.py

Gaia Sky Documentation

Overriding object coordinates provider

The positions of most objects in Gaia Sky are computed internally using coordinate providers. It is possible to override
the coordinate providers of objects and implement your own in Python. This way of setting the position of an object
is the best way to ensure internal consistency and overall system stability. When the coordinates provider is overriden,
the user code runs naturally during the scene graph update stage.

To implement a coordinates provider and set it to an object, you first need to create a class
that implements IPythonCoordinatesProvider, and submit it to Gaia Sky via the API call
setObjectCoordinatesProvider(name, provider). The provider class needs to have a
getEquatorialCartesianCoordinates(self, julianDate, outVector) method, which you need to
implement. In it, you need to compute the coordinates of your object for the given Julian date (double-precision
floating point number), in the internal reference system and units, and put the result in outVector, using the method
outVector.set(x, y, z).

Here is an example:

from py4j.clientserver import ClientServer, JavaParameters, PythonParameters
from py4j.java_collections import ListConverter
import os

This is the coordinates provider class.
It implements the method getEquatorialCartesianCoordinates().
class MyCoordinatesProvider(object):

def __init__(self, gateway):
self.gateway = gateway
self.gs = gateway.entry_point
self.converter = ListConverter()
self.km_to_u = self.gs.kilometresToInternalUnits(1.0)
self.pc_to_u = self.gs.parsecsToInternalUnits(1.0)

def getEquatorialCartesianCoordinates(self, julianDate, outVector):
Here we need internal coordinates.
x_km = 150000000 * self.km_to_u
z_km = 200000000 * self.km_to_u
v = [x_km, (julianDate - 2460048.0) * 100.0, z_km]

We need to set the result in the out vector.
outVector.set(v[0], v[1], v[2])
return outVector

def toString():
return "my-coordinates-provider"

class Java:
implements = ["gaiasky.util.coord.IPythonCoordinatesProvider"]

gateway = ClientServer(java_parameters=JavaParameters(auto_convert=True),
python_parameters=PythonParameters())

gs = gateway.entry_point

Load test star system.
(continues on next page)

1.4. User manual 119

Gaia Sky Documentation

(continued from previous page)

gs.loadDataset("Test star system", os.path.abspath("./particles-body-coordinates.json"))

Set coordinates provider.
provider = MyCoordinatesProvider(gateway)
gs.setObjectCoordinatesProvider("Test Coord Star", provider)

gs.startSimulationTime()
gs.setCameraFocus("Test Coord Star")

print("Coordinates provider set.")
input("Press a key to finish...")

gs.stopSimulationTime()
Clean up before shutting down, otherwise Gaia Sky will crash
due to the closed connection.
gs.removeObjectCoordinatesProvider("Test Coord Star")
gs.removeDataset("Coordinates test system")

gs.sleep(2.0)

gateway.shutdown()

You can find this script, along with the necessary JSON data file, here.

More examples

As we said, you can find more examples in the scripts folder in the repository.

Running and debugging scripts

In order to run scripts, you need a Python interpreter with the python-py4j module installed in your system.

Load up Gaia Sky, open a new terminal window and run your script:

$ python script.py

Please, note that Gaia Sky needs to be running before the script is started for the connection to succeed.

To debug a script in the terminal using pudb run this:

$ python -m pudb script.py

120 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/showcases/body-coordinates
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts

Gaia Sky Documentation

1.4.15 Frames and screenshots

Gaia Sky includes some utilities to save frames and screenshots to disk.

Frame ouptut

Hint: Enable and disable the frame ouptut system with F6.

Gaia Sky has an in-built method to save every frame to an image file. The purpose of this is to produce high quality
videos from the still frames. Of course, you can also produce videos by capturing the window with OBS or any other
screen recorder.

To configure the frame output system (mode, image format, quality, etc.), check out the frame output configuration
section.

Once enabled with F6, Gaia Sky starts saving every frame to an image file in the $GS_DATA/frames (see folders)
directory. The system saves every frame until F6 is hit again.

Frame ouptut modes

There are two frame output modes:

• Simple mode – save the current screen buffer directly to a file. This means that everything that’s on the Gaia
Sky window will be in the saved image, including the user interface elements.

• Advanced mode - render the current scene to an off-screen buffer with an arbitrary resolution. The resolution
can be configured in the preferences window, Frame output tab. The advanced mode does NOT render user
interface elements or any additional objects that are not part of the scene.

Screenshots

Gaia Sky has an in-built screenshot capturing feature. To take a screenshot press F5 any time during the execution of
the program. By default, screenshots are saved in the $GS_DATA/screenshots (see folders) folder. The screenshots
are in the format defined in the screenshot settings.

Hint: Take a screenshot with F5.

Screenshot modes

The same two modes available to the frame output system are also available to screenshots.

• Simple mode – save the current screen buffer directly to a file. This means that everything that’s on the Gaia
Sky window will be in the saved image, including the user interface elements.

• Advanced mode - render the current scene to an off-screen buffer with an arbitrary resolution. The resolution can
be configured in the preferences window, Screenshots tab. The advanced mode does NOT render user interface
elements or any additional objects that are not part of the scene.

1.4. User manual 121

Gaia Sky Documentation

1.4.16 Stereoscopic (3D) mode

Gaia Sky includes a stereoscopic mode or 3D mode which outputs two images each intended for each eye, creating the
illusion of depth.

Hint: or ctrl + s – Activate the stereoscopic mode

ctrl + shift + s – Switch between 3D profiles

Usually, as the images are placed side by side (even though most 3DTVs also support up and down), the right image
is intended for the right eye and the left image is intended for the left eye. This works with 3DTVs and VR head sets
(such as the Oculus Rift, Google cardboard, etc.). In 3DTVs, however, the image is distorted because each half of the
TV will be stretched back to the whole TV area when the 3D mode is on.

Gaia Sky also includes proper support for VR headsets through OpenXR. Check out the VR section for more info.

Additionally, there are a couple of techniques called cross-eye 3D (you can find some examples here, and here is a very
nice video teaching the concept and how to achieve it) and parallel view. These work without any extra equipment and
consist on trying to focus your eyes some distance before or after the actual image so that each eye receives the correct
image. In cross-eye this case the right images goes to the left eye and the left image goes to the right eye. The opposite
is true for parallel view images.

Stereoscopic profiles
In order to manage all these parameters, we have created 6 stereoscopic profiles which can be selected by the user and
are described below.

• VR headset – the left image goes to the left eye. Lens distortion is applied to be viewed with VR glasses.

• Crosseye – the left image goes to the right eye. No distortion is applied.

• Parallel view – the left image goes to the left eye. No distortion is applied.

• 3DTV Horizontal – the left image goes to the left eye. The left and right images are strecthed to fit in a half
of the screen.

• 3DTV Vertical – the top image goes to the left eye. Top and bottom images are stretched to fit in half of the
screen.

• Anaglyph 3D – to use with red-cyan glasses. Displays both the left and right images at full resolution. Left
image contains the red channel, right image contains the green and blue channels.

Hint: ctrl + shift + s – Switch between 3D profiles

122 Chapter 1. Contents

https://en.wikipedia.org/wiki/Stereoscopy
https://www.oculus.com/
https://www.google.com/get/cardboard/
https://digital-photography-school.com/9-crazy-cross-eye-3d-photography-images-and-how-to-make-them/
https://www.youtube.com/watch?v=zBa-bCxsZDk

Gaia Sky Documentation

Profile Image

VR headset

Crosseye

Parallel view

3DTV Hori-
zontal

3DTV Verti-
cal

Anaglyph

1.4. User manual 123

Gaia Sky Documentation

1.4.17 Planetarium mode

Gaia Sky supports different planetarium modes, depending on the projector setup.

• Single projector:

– Azimuthal equidistant (fisheye, dome master) projection.

– Spherical mirror projection.

• Multi-projector:

– Use the MPCDI standard and connect various Gaia Sky instances.

Contents

• Planetarium mode

– Single-projector setup

∗ Spherical mirror projection

· File format

– Multi-projector setup

∗ MPCDI

∗ Gaia Sky configuration file

– Re-projection shaders

Single-projector setup

Gaia Sky can output a true azimuthal equidistant (dome master) and spherical mirror projected stream suitable
for single-projector dome or mirror setups. If you need to separate the UI from the planetarium render window, you
have two options:

• Create an external view: External views.

• Connect two instances running (possibly) on different computers: Connecting Gaia Sky instances.

Hint: Please use ‘Triangles’ as the point cloud style to avoid the presence of seams. Using the legacy GL_POINTS
mode will result in visible seams.

Hint: To activate the planetarium mode, click on the icon in the camera section of the control panel. Exit by

clicking again. You can also use the shortcut ctrl + p. Switch the projection with ctrl + shift + p. If it does not
work, remove the $GS_CONFIG/mappings/keyboard.mappings file.

Hint: F7 – Save the faces of the current cubemap to image files in the screenshots directory.

Just like the panorama mode, this planetarium mode runs by rendering the scene into a cube map (using separate
renders for all directions +𝑋 , −𝑋 , +𝑌 , −𝑌 , +𝑍, −𝑍) and renders it using an azimuthal equidistant (also known
as dome master) projection or a spherical mirror projection.

124 Chapter 1. Contents

Gaia Sky Documentation

Fig. 68: Planetarium mode with the azimuthal equidistant (fisheye, dome master) projection.

1.4. User manual 125

_images/planetarium-mode.jpg

Gaia Sky Documentation

Here are the planetarium mode settings. They can be modified in the preferences window, planetarium tab.

• Cubemap side resolution – the resolution of each of the sides of the cubemap can be adjusted in the preferences
window, planetarium mode tab.

• Aperture angle – the default aperture is 180∘, corresponding to a half-sphere. However this angle can be adjusted
to suit different dome types in the planetarium mode tab of the preferences window.

• View skew – in focus mode, the view is skewed about 50∘ downwards. This setting is not adjustable as of now.

Spherical mirror projection

Gaia Sky supports the spherical mirror projection, where the image is projected using a regular projector and a spherical
mirror. For that, the user needs a warp file which defines the surface deformation. You can find some common warp
files in our data repository. The spherical mirror file format is described in this post by its creator, Paul Bourke. We
reproduce it below, in the spherical mirror format subsection.

• spherical_mirror.mp4 – video of the spherical mirror projection, open in new tab!

In planetarium mode, you can switch the projection mode with ctrl + shift + p.

In the preferences window, Planetarium mode tab there is one extra setting that applies only to the spherical mirror
projection:

• Warp mesh file – select the warp file you want to use. This only applies when the spherical mirror projection is
being used.

Fig. 69: Planetarium mode with the spherical mirror projection.

126 Chapter 1. Contents

https://gaia.ari.uni-heidelberg.de/gaiasky/files/repository/sphericalmirror/warping-meshes/
https://gaia.ari.uni-heidelberg.de/gaiasky/files/repository/sphericalmirror/warping-meshes/
https://paulbourke.net/dataformats/meshwarp/
https://gaia.ari.uni-heidelberg.de/gaiasky/files/videos/20230403_spherical_mirror/spherical_mirror.mp4
_images/spherical-mirror.jpg

Gaia Sky Documentation

File format

This content is from Paul Bourke’s website describing the spherical mirror file format.

• First line contains the mesh type, currently rectangular (2) and polar (1) are supported, see figure 3. The only
significant difference between these two is the mesh continuity that occurs for the polar mesh across the 0 and
360 degree boundary.

• Second line contains two integers indicating the mesh dimensions, nx and ny.

• The subsequent lines define the nodes, there should be nx times ny lines. These lines contain 5 values defined as
follows.

– Position x and y of the node in normalised coordinates. The mesh need not exactly match the projected
image, in figure 2 it actually extends off the projected region while in figure 4 it matches the 4:3 aspect
exactly. In the later case the horizontal range (x) will be +- the aspect ratio and the vertical range (y) will
be +- 1 (ie: OpenGL style normalised coordinates).

– Texture coordinate u and v, these should each range from 0 to 1, they refer to the original input image.
Values outside the 0 to 1 range indicate that the node is not to be used, this usually means the mesh cells
sharing that node are not used but sometimes it is appropriate to triangulate the mesh for such cells.

– A multiplicative intensity value applied to each r,g,b colour value. The can be used for simple edge blending
and to compensate for brightness variation due to different light path lengths from projector to projection
surface. This intensity correction should range from 0 to 1, negative values indicate that the node should
not be drawn. So 0 indicates none of the corresponding colour, 1 indicates fully saturated. Nodes with
intensities outside this range should not be used. Note that per colour, gamma corrected edge blending
requires three separate intensity scale factors, one for each r,g,b. While this is a simple extension to the
format it is not included here and left to the reader to implement if required.

Multi-projector setup

Gaia Sky offers support for multi-projector setups, where a number of slave instances (each with its own viewport,
field of view, warp and blend settings), are synchronized with a master (presenter) instance. Each slave is in charge of
producing the image for a single projector and has a different view setup, geometry warp and blend mask. The current
section only deals with the configuration of the view, warp and blend parameters for each slave.

Hint: The configuration and setup of the connection between master and slave instances is documented in the “Con-
necting Gaia Sky instances” section.

Additionally to the configuration needed to connect master and slaves, the slave instances need a special view, resolution,
warp and blend configuration. These depend on the specifications, location and orientation of each projector, as well
as the projection surface.

The following settings can be configured:

• The yaw angle – turn the camera right

• The pitch angle – turn the camera up

• The roll angle – rotate the camera clock-wise

• The field of view angle

• The geometry warp file – a PFM file that contains the destination location for each source location in normalized
coordinates

• The blend mask – an 8-bit RGB or RGBA PNG file with the blending mask

1.4. User manual 127

https://paulbourke.net/dataformats/meshwarp/

Gaia Sky Documentation

The master-slave connection happens via the REST API server in Gaia Sky.

Gaia Sky offers two ways to configure these settings for each slave instance:

• Using the MPCDI standard file format

• Using the configuration file of Gaia Sky directly

MPCDI

Gaia Sky partially supports the MPCDI format in order to configure each instance. You will need a single .mpcdi file
for each projector/gaia sky instance. Each file contains the resolution, the yaw, pitch and roll angles, the field of view
angle and optionally a PFM warp file and a PNG blend mask. Gaia Sky does not support the MPCDI format fully, here
are some caveats.

• Only the ‘3d’ profile is supported

• Only one buffer per display is supported

• Only one region per buffer is supported, and this region must cover the full frame

• Only linear interpolation is supported for the warp file

In order to set the .mpcdi file for an instance, set/edit the following property in the instance’s configuration file:

program.net.slave.config=[path_to_file]/instance_config.mpcdi

Gaia Sky configuration file

If you do not have the MPCDI files for your projector setup, you can also configure each instance directly using the Gaia
Sky properties file for that instance.

Usually, each instance has a configuration file with the name config.slave[n].yaml, without the brackets, where n
is the slave number. Open this file for each instance and set/edit the following properties.

If you don't have an mpcdi file, use these next properties to
configure the orientation. In order for this to work, you also
need to set fullscreen=true, the right fullscreen resolution
and the right field of view angle.

Yaw angle (turn head right)
program.net.slave.yaw=[yaw angle in degrees]
Pitch angle (turn head up)
program.net.slave.pitch=[pitch angle in degrees]
Roll angle (rotate head cw)
program.net.slave.roll=[roll angle in degrees]
Warp pfm file
program.net.slave.warp=[path to PFM warp file]
Blend png file
program.net.slave.blend=[path to 8-bit RGB or RGBA PNG file to use as blend mask]

128 Chapter 1. Contents

https://newsandviews.dataton.com/what-is-mpcdi

Gaia Sky Documentation

Re-projection shaders

The planetarium mode can be simulated in a geometrically incorrect manner by using the post-processing re-projection
shaders. These work on the final image after the perspective projection, and re-project it using different algorithms.
Please, refer to the re-projection section for more details.

For some shaders, you may want to use a greater field of view angle than the maximum. You can do so by directly
editing the configuration file. For example, we can set the field of view to 160∘ like so:

scene:
camera:
fov: 160.0

Finally, since the re-projection shaders stretch the image, it may be desirable to use a larger resolution for the back
buffer. This operation is experimental and not recommended, but it works. Refer to the back-buffer scale section for
more information.

1.4.18 Panorama mode

Gaia Sky includes a panorama mode where the scene is rendered in all directions (+𝑋 , −𝑋 , +𝑌 , −𝑌 , +𝑍, −𝑍) to a
cube map.

Contents

• Panorama mode

– Configuration

– Creating panorama images

∗ Injecting panorama metadata to 360 images

– Creating spherical (360) videos

Hint: To activate the panorama mode, click on the icon in the camera section of the control panel. Exit by

clicking again. You can also use ctrl + k.

This cube map is then projected onto a flat image. The projections available are:

• Equirectangular/spherical.

• Cylindrical.

• Hammer.

• Orthographic – Renders each hemisphere side-by-side.

Hint: ctrl + shift + k – Cycle between the different projections.

The final image can be used to create 360 panorama videos with head tracking (see here).

1.4. User manual 129

https://en.wikipedia.org/wiki/Cube_mapping
http://alexcpeterson.com/2015/08/25/converting-a-cube-map-to-a-sphericalequirectangular-map/
https://en.wikipedia.org/wiki/Map_projection#Cylindrical
https://en.wikipedia.org/wiki/Hammer_projection
https://en.wikipedia.org/wiki/Orthographic_projection
https://www.youtube.com/watch?v=Bvsb8LZwkgc&t=33s

Gaia Sky Documentation

Hint: F7 – Save the faces of the current cubemap to image files in the screenshots directory.

Configuration

Please, see the panorama mode configuration section.

Hint: Please use ‘Triangles’ as the point cloud style to avoid the presence of seams. Using the legacy GL_POINTS
mode will result in visible seams.

Creating panorama images

In order to create panorama images that can be viewed with a VR device or simply a 360 viewer, we need to take into
consideration a few points.

• You should probably use the equirectangular (spherical) projection, as it is the simplest and the one most programs
use.

• Panoramas work best if their aspect ratio is 2:1, so a resolution of 5300x2650 or similar should work. (Refer
to the Screenshots section to learn how to take screenshots with an arbitrary resolution).

• Some services (like Google) have strong constraints on image properties. For instance, they must be at least 14
megapixels and in jpeg format. Learn more here.

• Some metadata needs to be injected into the image file.

Injecting panorama metadata to 360 images

The program ExifTool can be used to inject the 360 metadata into the images. For example, with a panorama 4K image
(3840x2160) we need to run the following command:

$ exiftool -UsePanoramaViewer=True -ProjectionType=equirectangular -
→˓PoseHeadingDegrees=360.0 -CroppedAreaLeftPixels=0 -FullPanoWidthPixels=3840 -
→˓CroppedAreaImageHeightPixels=2160 -FullPanoHeightPixels=2160 -
→˓CroppedAreaImageWidthPixels=3840 -CroppedAreaTopPixels=0 -
→˓LargestValidInteriorRectLeft=0 -LargestValidInteriorRectTop=0 -
→˓LargestValidInteriorRectWidth=3840 -LargestValidInteriorRectHeight=2160 image_name.jpg

Creating spherical (360) videos

First, you need to capture the 360 video. To do so, capture the images and use ffmpeg to encode them or capture the
video directly using a screen recorder. See the Capturing videos section for more information. Once you have the .mp4
video file, you must use the spatial media project to inject the spherical metadata so that video players that support it
can play it correctly.

First, clone the project.

$ git clone https://github.com/google/spatial-media.git
$ cd spatial-media/

130 Chapter 1. Contents

https://support.google.com/maps/answer/7012050?hl=en&ref_topic=6275604
http://owl.phy.queensu.ca/~phil/exiftool/
https://gitlab.com/google/spatial-media

Gaia Sky Documentation

Fig. 70: Panorama image captured with Gaia Sky, using the orthographic projection.

Then, inject the spherical metadata with the following command. Python 2.7 must be used to run the tool, so make
sure to use that version.

$ python spatialmedia -i <inupt_file> <output_file>

You are done, your video can now be viewed using any 360 video player.

To check whether the metadata has been injected correctly, just do:

$ python spatialmedia <file>

1.4.19 Orthosphere view mode

Hint: Use the button in the camera pane, or ctrl + j to enter and exit the orthosphere view mode.

The orthosphere view mode blends the two hemispheres of the orthographic projection in panorama mode on top of
each other to simulate a full celestial sphere. There are two profiles:

• Orthosphere – the base mode, in which both hemispheres are blended on top of each other. Optionally, you can
fill up the sphere with a material with a certain refraction index. To do so, open the preferences dialog, go to
the Graphics configuration tab and scroll down to the experimental section. You will find a “Refraction index”
slider to modify it.

• Orthosphere cross-eye – a stereoscopic (3D) cross-eye mode which lays the images for each eye side-by-side.

Hint: ctrl + shift + j – Cycle between the different profiles.

1.4. User manual 131

Gaia Sky Documentation

Hint: F7 – Save the faces of the current cubemap to image files in the screenshots directory.

1.4.20 Eclipse representation

Gaia Sky can represent eclipse events between bodies. You can enable and configure eclipses in the preferences window
(see the scene settings page).

By default, we provide a series of bookmarks to Solar eclipse events (see the bookmarks documentation) in the ‘Eclipses’
folder in the bookmarks pane. Try clicking on any of those, and you should be immediately transported to the time and
place of an eclipse.

If highlighting is enabled the penumbra region is highlighted with a yellow line, and the umbra region is highlighted
with a red line.

Fig. 71: The Eclipse of August 11, 1999 in Gaia Sky.

1.4.21 Bounding shapes

You can add shapes around any focus-able object. To do so, right click on the object you want to add the shape around
and a context menu like the following pops up:

132 Chapter 1. Contents

Gaia Sky Documentation

Fig. 72: Add bounding shape, context menu

Adding bounding shapes

If you select “Add shape around ‘object’. . . ”, the following dialog shows up:

When adding a shape around an object there are a few properties that we can choose:

• Object name – The name of the object. This will show up as the object label if ‘Show name label’ is checked.

• Object size – The size of the object, together with the units of the size.

• Show name label – Whether to show the label for the bounding shape or not.

• Track object position – When checked, the bounding shape will follow the object around if/when it moves.
Otherwise, the shape will stay at the original position.

• Shape type – The shape type. Possible shapes are sphere, icosphere, octahedron sphere, cone, cylinder and ring.

• Color – The color of the shape.

• Primitive type* – The primitive to use for rendering. If **LINES, the shape is shown as a wireframe. If
TRIANGLES, the shape is rendered as a solid object.

• Orientation – The orientation of the shape. Can be one of:

• Camera – Use the current camera direction and up vectors to configure the orientation matrix of the shape.

• Equatorial system – Use the equatorial system.

• Ecliptic system – Use the ecliptic system.

• Galactic system – Use the galactic system.

1.4. User manual 133

_images/bounding-shapes.jpg

Gaia Sky Documentation

Fig. 73: Add bounding shape dialog

Removing shape objects

You can remove shape object using the context menu. You can either only remove the shape objects linked to a particular
object with ‘Remove all shapes around Object’, or remove all the shapes with ‘Remove all shapes’.

1.4.22 External views

Gaia Sky offers a mode to create an additional window with an external view of the current scene and no user interface
controls. This may be useful when presenting or in order to project the view to an external screen or dome.

In order to create the view, just use the -e or --externalview flags when launching Gaia Sky.

$ gaiasky -e

The external view contains a copy of the same frame buffer rendered in the main view. The scene is not re-rendered
(for now), so increasing the size of the external window won’t increase its base resolution. The original aspect ratio is
maintained in the external view to avoid stretching the image.

Hint: Enable the external view at launch with the flag -e or --externalview.

1.4.23 Connecting Gaia Sky instances

Gaia Sky offers a method to connect different instances together so that their internal state is synchronized. The model
uses a primary-replica scenario, where one (and only one) instance acts as a primary and one or more instances act
as replicas, getting their internal states updated over a network. The user interacts with the primary instance and all
replicas are updated accordingly.

Contents

• Connecting Gaia Sky instances

– Configuration

134 Chapter 1. Contents

_images/bounding-shape-dialog.jpg

Gaia Sky Documentation

Fig. 74: External view using planetarium mode

– Configuration: replica instance(s)

– Configuration: primary instance

– Caveats

Note: In this section we use the words ‘primary’ and ‘master’ interchangeably to refer to the main Gaia Sky instance
that controls the rest. We also use the words ‘slave’ and ‘replica’ to describe the instances that are controlled by the
primary.

This section describes only how to configure the primary and the replica instances in order to connect them together.
This method is used to provide multi-projector rendering support (i.e. planetarium domes), but extra steps are needed
in order to configure the orientation, distortion warp and blend settings for each replica instance.

The various instances are connected using the REST API server feature of Gaia Sky.

Hint: Multi-projector configuration is covered in the “Planetarium mode multi-projector setup” section.

1.4. User manual 135

Gaia Sky Documentation

Configuration

The configuration is easy and painless. You will need to launch each instance of Gaia Sky using a different configura-
tion file (config.yaml). You can run Gaia Sky with a specific configuration file by using the -p or --properties
command line flags:

$ gaiasky -p ~/.config/gaiasky/config.primary.yaml

The next sections explain how to configure the primary and the replica instances.

Configuration: replica instance(s)

You can have as many replica instances as you want, but here we’ll explain the process of setting up two replicas.

1. Copy the current config.yaml file in your config folder (see folders) into config.replica0.yaml. The name
is irrelevant, but choose something meaningful. Repeat with config.replica1.yaml.

2. Set the property program::net::slave::active: true in each file and make sure that
program::net::master::active is set to false.

3. Set the desired port to listen to in program::net::restPort. For example, to use the port 13900 just set the
property program::net::restPort: 13900. Use a different port for each replica (i.e. replica 0 listens to
13900, slave 1 listens to 13901, etc.). For example, to set up a replica in port 13900, make sure that the following
lines are in its configuration file:

program:
net:

restPort: 13900
master:

active: false
slave:

active: true

The replica instances should be launched before the primary. Launch the replica(s) with:

$ # Launch replica 0
$ gaiasky -p /path/to/config.replica0.yaml
$ # Launch replica 1
$ gaiasky -p /path/to/config.replica1.yaml

Once the replica(s) have been launched, you can verify that the API is working by visiting http://localhost:13900/
api/help with your browser. Modify the port with whatever port you are using.

Hint: Only the primary instance is starting the scripting server. The replicas are automatically forbidden to do so!

136 Chapter 1. Contents

Gaia Sky Documentation

Configuration: primary instance

Copy the current config.yaml file into config.primary.yaml and edit the following lines.

1. Set the property progra::net::master::active: true and make sure that
program::net::slave::active is set to false.

2. Add the locations of all desired replicas under the settings program::net::master::slaves: [URL1,
URL2, ...].

For example, in order to connect the primary with two replicas, both running locally (localhost) on ports 13900 and
13901, add the following to the config.primary.yaml file:

program:
net:

restPort: 13900
master:

active: true
slaves: [http://localhost:13900/api/,http://localhost:13901/api/]

slave:
active: false

Then, just launch the primary (after the replicas are running!):

$ gaiasky -p /path/to/config.primary.yaml

Caveats

Even though this offers a very flexible system to connect several instances of Gaia Sky together, each instance is a
fully-fledged application with its own copy of the scene graph and the data structures. This means that, if you run them
locally, the data and scene graph will be replicated several times in memory, possibly consuming lots of gigabytes.

Handle it with care.

1.4.24 REST API

Gaia Sky provides a REST API feature that exposes the scripting API over the network via an HTTP server. This
feature is used to connect multiple instances and to enable the multi-projector setup in planetariums.

Hint: The REST API feature may permit remote code execution and open your machine to vulnerabilities.
Only use the feature in a trusted environment!

Contents

• REST API

– Using the REST API

– Debug

In order to enable the REST API over an HTTP server in Gaia Sky, you need to modify the configuration file. The
default location is ~/.config/gaiasky/config.yaml in Linux and [User.Home]\.gaiasky\config.yaml in
Windows and macOS. In that file, there is a property program::net::restPort (double colons indicate nesting)

1.4. User manual 137

Gaia Sky Documentation

with the default value of -1. You can enable the REST server by setting this value to a positive integer number which
will be the listening port of the server. For instance, we can start Gaia Sky with the REST server listening to the port
34487 with:

program:
net:

restPort: 34487

Then, start Gaia Sky normally. You should see a couple of lines in the logs starting with RESTServer informing you
that the REST API server is ready. Then, open your browser and point it to http://localhost:34487/api. You
should get a JSON-formatted page documenting all the API calls available:

Fig. 75: The help page showing all REST API calls in Firefox

138 Chapter 1. Contents

../_images/firefox-rest.jpg

Gaia Sky Documentation

Using the REST API

The API allows for developing additional software that interfaces with Gaia Sky without the need for language-
specific bindings or inter-process communication protocols. Calling methods from the scripting interface
IScriptingInterface is enabled locally and remotely via HTTP.

The syntax of API commands is set to be close to the Java method interface, but does not cover it in all generality to
permit simple usage. Particularly note that the REST server receives strings from the client and will try to convert them
into correct types.

Commands require HTTP request parameters having the names for the formal parameters of the script interface methods
to allow simple construction of HTTP requests based on the scripting interface source documentation. We use Java
reflections with access to the formal parameter names. Accordingly, the code needs to be compiled with -parameters
(otherwise parameters are named arg0, arg1, . . .).

Both GET and POST requests are accepted. Although GET requests are not supposed to have side effects, we include
them for easy usage with a browser.

Issue commands with a syntax like the following:

• http://localhost:PORT/api/setCameraUp?up=[1.,0.,0.]

• http://localhost:PORT/api/getScreenWidth

• http://localhost:PORT/api/goToObject?name=Jupiter&angle=32.9&focusWait=2

Give booleans, integers, floats, doubles, strings as they are, vectors are comma-separated with square brackets around:
true, 42, 3.1, 3.14877, Super-string, [1,2,3], [Do,what,they,told,ya]. Note that you might need to escape
or URL-encode characters in a browser for this (e.g. spaces or “=”).

Response with return data is in JSON format, containing key/value pairs. The "success" pair tells you about suc-
cess/failure of the call, the "value" pair gives the return value. Void methods will contain a "null" return value. The
"text" pair can give additional information on the call.

The "cmd_syntax" entry you get from the help command (e.g. http://localhost:PORT/api/help) gives a
summary of permitted commands and their return type. Details on the meaning of the command and its parameters
need to be found from the scripting API documentation.

Debug

To examine, what happens during an API call, set the default log level of SimpleLogger to ‘info’ or lower (in the build
file core/build.gradle).

Return values are given as JSON objects that contain key-value pairs:

• "success" indicates whether the API call was executed successful or not

• "text" may give additional text information

• "value" contains the return value or null if there is no return value

For testing with curl, a call like the following allows will deal with URL-encoding. The line below, when issued with a
running Gaia Sky instance with the REST API server enabled listening to port 34487, will print the message “Hi, how
are you?” in the Gaia Sky window:

curl "http://localhost:34487/api/setHeadlineMessage" --data headline='Hi, how are you?'

You can clear it with:

curl "http://localhost:34487/api/clearHeadlineMessage"

1.4. User manual 139

Gaia Sky Documentation

1.4.25 Capturing videos

In order to capture videos there are at least two options which differ significantly.

Frame output system + ffmpeg

The frame output system enables automatic saving of every frame to an image file to disk with an arbitrary resolution
and a user-defined frame rate. The image files can later be encoded into a video using video encoder software such as
ffmpeg.

Note: Use F6 to activate the frame output mode and start saving each frame as an image. Use F6 again to deactivate

it. When the frame output mode is active, the icon is displayed at the top-right corner of the screen.

When the frame output system is active, each frame is saved as a JPG or PNG image to disk. Refer to the Frame output
section to learn how to configure the frame output system.

Once you have the image frames you can encode a video using a ffmpeg preset (slow, veryslow, fast, etc.) with the
following command:

$ ffmpeg -framerate 60 -start_number [start_img_num] -i [prefix]%05d.jpg -vframes [num_
→˓images] -s 1280x720 -c:v libx264 -preset [slower|veryslow|placebo] -r 60 [out_video_
→˓filename].mp4

Please note that if you don’t want scaling, the --framerate input framerate, -r output framerate and -s resolution
settings must match the settings defined in the frame output system preferences in Gaia Sky. You can also use a constant
rate factor -crf setting:

$ ffmpeg -framerate 60 -start_number [start_img_num] -i [prefix]%05d.jpg -vframes [num_
→˓images] -s 1280x720 -c:v libx264 -pix_fmt yuv420p -crf 23 -r 60 [out_video_filename].
→˓mp4

You need to obviously change the prefix and start number, if any, choose the right resolution, frame rate and preset and
modify the output format if you need to.

ffmpeg is quite a complex command which provides a lot of options, so for more information please refer to the official
ffmpeg documentation. Also, here is a good resource on encoding videos from image sequences with ffmpeg.

OpenGL/Screen recorders

There are several available options to record the screen or OpenGL context, in all systems. Below are some of these
listed. These methods, however, will only record the scene as it is displayed in the screen and are limited to its window
resolution.

140 Chapter 1. Contents

https://ffmpeg.org/
https://ffmpeg.org/documentation.html
https://en.wikibooks.org/wiki/FFMPEG_An_Intermediate_Guide/image_sequence

Gaia Sky Documentation

Linux

• OBS Studio – amazing open source capturing and streaming solution.

• Simple Screen Recorder – the name says it all.

Windows

• OBS Studio – amazing open source capturing and streaming solution.

• FRAPS – 3rd party Direct3D and OpenGL recording software.

• NVIDIA Shadowplay – only for NVIDIA cards.

1.4.26 SAMP integration

Gaia Sky supports interoperability via SAMP. However, due to the nature of Gaia Sky, not all functions are yet imple-
mented and not all types of data tables are supported.

Since Gaia Sky only displays 3D positional information there are a few restrictions as to how the integration with SAMP
is implemented.

The current implementation only allows using Gaia Sky as a SAMP client. This means that when Gaia Sky is started,
it automatically looks for a preexisting SAMP hub. If it is found, then a connection is attempted. If it is not found, then
Gaia Sky will attempt further connections at regular intervals of 10 seconds. Gaia Sky will never run its own SAMP
hub, so the user always needs a SAMP-hub application (Topcat, Aladin, etc.) to use the interoperability that SAMP
offers.

Also, the only supported format in SAMP is VOTable through the STIL data provider. The datasets must be curated as
described in the Preparing datasets section.

Implemented features

The following SAMP features are implemented:

• Load VOTable (table.load.votable) – the VOTable will be loaded into Gaia Sky if it adheres to the format
above.

• Highlight row (table.highlight.row) – the row (object) is set as the new focus if the table it comes from is
already loaded. Otherwise, Gaia Sky will not load the table lazily.

• Broadcast selection (table.highlight.row) – when a star of a table loaded via SAMP is selected, Gaia Sky
broadcasts it as a row highlight, so that other clients may act on it.

• Point at sky (coord.pointAt.sky) – puts camera in free mode and points it to the specific direction.

• Multi selection (table.select.rowList) – Gaia Sky does not have multiple selections so far, so only the first
one is used right now.

1.4. User manual 141

https://obsproject.com/
https://www.maartenbaert.be/simplescreenrecorder/
https://obsproject.com/
https://www.fraps.com/
https://www.geforce.com/geforce-experience/shadowplay
http://www.ivoa.net/documents/SAMP/

Gaia Sky Documentation

Unimplemented features

The following SAMP functions are not yet implemented:

• table.load.* – only VOTable supported.

• image.load.fits

• spectrum.load.ssa-generic

• client.env.get

• bibcode.load

• voresource.loadlist

• coverage.load.moc.fits

1.4.27 Procedural planetary surfaces

Gaia Sky is able to procedurally generate planetary surfaces, cloud layers and also atmospheres. These can be applied
to planets and moons to modify their looks. The elements that can be procedurally generated are, then, the model
surface, the cloud layer and the atmosphere.

Contents

• Procedural planetary surfaces

– Surface generation process

∗ Seamless (tilable) noise

∗ Noise parametrization

– Cloud generation process

– Descriptor files

∗ Randomize all

∗ Surface description

· Color look-up table

· Noise parameters

∗ Cloud description

∗ Atmospheric parameters description

– Procedural generation at runtime

Hint: The techniques and methods behind the procedural generation of planetary surfaces in Gaia Sky are described
in detail in this external article.

The procedural generation module is accessible via two distinct ways:
1. Specifying the procedural generation parameters in descriptor files. This way allows for the textual definition

of bodies and their procedural generation parameters. The files can be loaded at startup and distributed so that
other Gaia Sky users can load them.

142 Chapter 1. Contents

https://tonisagrista.com/blog/2021/procedural-planetary-surfaces/

Gaia Sky Documentation

2. Using the runtime procedural generation window to generate and modify surfaces, clouds and atmospheres. The
results are only permanent during the current session and are lost on restart.

But first, let’s learn about the process used to generate surfaces and clouds.

Surface generation process

The surface generation process starts with the generation of the elevation and humidity data. The elevation data is a
2D array containing the elevation value in [0, 1] at each coordinate. The humidity data is the same but it contains the
humidity value, which will come in handy for the coloring. First, let’s visit our sampling process.

Seamless (tilable) noise

Usually, noise sampled directly is not tileable. The features do not repeat, and you just can’t extend the noise indefinitely
because seams are visible. In the case of one dimension, usually one would sample the noise using the only dimension
available, 𝑥.

Fig. 76: Sampling noise in 1D leads to seams

However, if we go one dimension higher, 2D, and sample the noise along a circumference embedded in this two-
dimensional space, we get seamless, tileable noise.

Fig. 77: Sampling noise along a circumference in 2D space is seamless

We can apply this same principle with any dimension 𝑑 by sampling in 𝑑 + 1. Since we need to create spherical 2D
maps, we do not sample the noise algorithm with the 𝑥 and 𝑦 coordinates of the pixel in image space. That would
produce higher frequencies at the poles and lower around the equator. Additionally, the noise would contain seams,
as it does not tile by default. Instead, we sample the 2D surface of a sphere of radius 1 embedded in a 3D volume,
so we sample 3D noise. To do so, we iterate over the spherical coordinates 𝜙 and 𝜃, and transform them to cartesian
coordinates to sample the noise:

𝑥 = cos𝜙 sin 𝜃

𝑦 = sin𝜙 sin 𝜃

𝑧 = cos𝜙

The process is outlined in this code snippet. If the final map resolution is 𝑁 ×𝑀 , we use N 𝜃 steps and M 𝜙 steps.

1.4. User manual 143

_images/noise-sampling-1d.png
_images/noise-sampling-2d.png

Gaia Sky Documentation

for (phi = -PI / 2; phi < PI / 2; phi += PI / M){
for (theta = 0; theta < 2 * PI; theta += 2 * PI / N) {

n = noise.sample(cos(phi) * cos(theta), // x
cos(phi) * sin(theta), // y
sin(phi)); // z

theta += 2 * PI / N;
}

}

Noise parametrization

The generation is carried out by sampling configurable noise algorithms at different levels of detail, or octaves. To do
that, we have some important noise parameters to adjust:

• seed—a number which is used as a seed for the noise RNG.

• type—the base noise type. Can be gradient (Perlin) noise1, gradval noise2, simplex3, value4 or white5. Find
more information here.

• fractal type—the algorithm used to modify the noise in each octave. It determines the persistence (how the
amplitude is modified) as well as the gain and the offset. Can be billow, deCarpenterSwiss, FBM, hybrid
multi, multi or ridge multi. Find more information here.

• scale—determines the scale of the sampling volume. The noise is sampled on the 2D surface of a sphere em-
bedded in a 3D volume to make it seamless. The scale stretches each of the dimensions of this sampling volume.

• octaves—the number of levels of detail. Each octave reduces the amplitude and increases the frequency of the
noise by using the lacunarity parameter.

• frequency—the initial frequency of the first octave. Determines how much detail the noise has.

• lacunarity—determines how much detail is added or removed at each octave by modifying the frequency.

• range—the output of the noise generation stage is in [0, 1] and gets map to the range specified in this parameter.
Water gets mapped to negative values, so adding a range of [−1, 1] will get roughly half of the surface submerged
in water.

• power—power function exponent to apply to the output of the range stage.

Fig. 78: The different types of noise, sampled raw with no fractals

The final stage of the procedural noise generation clamps the output to [0, 1] again, so that all negative values are
mapped to 0, and all values greater than 1 are clamped to 1.

Both elevation and humidity data use the same set of parameters right now. The elevation is used directly as the height
texture. The humidity is used, together with the elevation, to determine the color using a look-up table. The humidity
value is mapped to the X coordinate, while the elevation value is mapped to Y. Both coordinates are normalized to
[0, 1].

1 https://en.wikipedia.org/wiki/Gradient_noise
2 Addition of gradient and value noise
3 https://en.wikipedia.org/wiki/Simplex_noise
4 https://en.wikipedia.org/wiki/Value_noise
5 https://en.wikipedia.org/wiki/White_noise

144 Chapter 1. Contents

https://joise.sudoplaygames.com/modules/#modulebasisfunction
https://joise.sudoplaygames.com/modules/#modulefractal
_images/noise-types-annotated.jpg
https://en.wikipedia.org/wiki/Gradient_noise
https://en.wikipedia.org/wiki/Simplex_noise
https://en.wikipedia.org/wiki/Value_noise
https://en.wikipedia.org/wiki/White_noise

Gaia Sky Documentation

Fig. 79: The look-up table mapping dimensions are elevation and humidity

The look-up can also be hue-shifted by an extra hue shift parameter, in [0∘, 360∘]. The shift happens in the HSL color
space. Once the shift is established, we generate the diffuse texture by sampling the look-up table and shifting the hue.
The specular texture is generated by assigning all heights equal to zero to a full specular value. Remember that all
negative values were clamped to zero, so zero essentially equals water in the final height map.

Finally, the normal map is generated from the height map by determining elevation gradients in both X and Y. We use
the normal map only when tessellation is unavailable or disabled. Otherwise it is not generated at all.

Cloud generation process

The clouds are generated with the same algorithm and the same parameters as the surface elevation. Then, an additional
color parameter is used to color them. For the clouds to look better one can set a larger Z scale value compared to X
and Y, so that the clouds are stretched in the directions perpendicular to the rotation axis of the planet.

Descriptor files

This section describes how to set up the procedural generation using JSON descriptor files and how to express the
parameters seen in the previous section in these descriptor files. The format is thoroughly documented in this section.

The procedural generation parameters for surfaces and clouds are described in the material and cloud elements. The
material element lives inside the model element. By contrast, there are no procedural generation parameters that can
be set in the atmosphere element itself. It just holds the atmospheric scattering parameters. However, the atmosphere
element as a whole can be randomized. Let’s see how to randomize these elements in the next section.

1.4. User manual 145

_images/procedural-lut.png

Gaia Sky Documentation

Fig. 80: Left to right and top to bottom, clouds map, diffuse texture, elevation map, normal map and specular map
procedurally generated with Gaia Sky.

146 Chapter 1. Contents

_images/procedural-maps.jpg

Gaia Sky Documentation

Randomize all

The easiest way to add procedural generation to an object is by using the randomize element. It is an array which
can contain the strings "model", "cloud" and "atmosphere". It can optionally be accompanied by a seed element,
specifying the seeds for each of the elements to randomized. A seed is a 64-bit number used to initialize the RNG
(random number generator) so that it always produces the same random number sequence. If you omit the seeds the
system will randomly generate them. Otherwise, they are matched to elements by their order of appearance in the
arrays. If the seeds array is not long enough, the first seed is used. Let’s see an example:

{
"name" : "Exonia f",

"randomize" : ["model", "cloud", "atmosphere"],
"seed" : [111, 222, 333]

}

In the snippet above we have omitted all the usual elements (color, size, ct, etc.) except the name. The last two
elements specify the components to randomize and their seeds. In this case, the model would take the seed 111, the
cloud would take the seed 222 and the atmosphere would take the seed 333.

If any of the elements were not present in the randomize array, it would not be generated. If the element object is
present, it will be picked up though, but only if the randomize array does not contain it. The randomize array has
precedence.

Surface description

Some of the textures in the material element, making up the surface of the body, can be procedurally generated. The
procedural generation parameters are specified in the material element inside the model element. Let’s see an exam-
ple:

"model" : {
"args" : [true],
"type" : "sphere",
"params" : {

"quality" : 400,
"diameter" : 1.0,
"flip" : false

},
"material" : {

"height" : "generate",
"diffuse" : "generate",
"normal" : "generate",
"specular" : "generate",
"biomelut" : "data/tex/base/biome-smooth-lut.png",
"biomehueshift" : -15.0,
"heightScale" : 14.0,
"noise" : {

"seed" : 993390,
"scale" : 0.1,
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 5.34,
"lacunarity" : 2.0,

(continues on next page)

1.4. User manual 147

Gaia Sky Documentation

(continued from previous page)

"octaves" : 10,
"range" : [-1.4, 1.0],
"power" : 7.5

},
}

}

Usually, the diffuse, height, normal and specular elements contain texture image file locations. However, if
they are set with the special token "genearte", they will be procedurally generated by the system using the process
described above.

Color look-up table

The color look-up table is specified in the biomelut element as a pointer to a data file. The hue shift is specified in
biomehueshift, and contains the shift value in degrees.

Noise parameters

The noise parameters described in this section above can be specified in the noise attribute. The parameters translate
1-to-1 to what is described above, so they are pretty much already covered. If the noise parameters are not there, they
are randomly initialized. These noise parameters are used to produce the elevation data and the humidity data.

Cloud description

The clouds description goes in the cloud attribute. It contains the size of the clouds sphere (in km) and the parameters
for the model. Then, in cloudwe can either specify a texture image file, or we can use the reserved token "generate".
If this is there, we can specify the noise parameters just like in the material. If the noise parameters are not there, they
are randomized automatically.

"cloud" : {
"size" : 2430.0,
"cloud" : "generate",
"params" : {

"quality" : 200,
"diameter" : 2.0,
"flip" : false

}
"noise" : {

"seed" : 1234,
"scale" : [1.0, 1.0, 0.4],
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 4.34,
"octaves" : 6,
"range" : [-1.5, 0.4],
"power" : 10.0

}
}

148 Chapter 1. Contents

Gaia Sky Documentation

Atmospheric parameters description

The format for the atmospheric scattering parameters is documented in this section. If the value atmosphere is in the
array of randomize, the atmospheric scattering parameters will be randomized automatically.

Procedural generation at runtime

This section describes how to modify procedural generation parameters at runtime in real time.

You can bring up the procedural generation dialog by right clicking on any planet and/or moon, and then clicking on
Procedural generation. . . . This brings up the following dialog.

Fig. 81: The procedural generation dialog in Gaia Sky

1.4. User manual 149

_images/procedural-ui.jpg

Gaia Sky Documentation

In it, there are three tabs for surface, clouds and atmosphere. Use the controls in each tab to modify each of the
procedural generation and atmospheric scattering parameters. Apply them in real time with the generate buttons. Use
the randomize buttons to randomize all the parameters.

At the bottom, there is a check box to export all the generated textures to image files and save them to disk. The save
location is the directory tex/procedural within your data directory.

Fig. 82: A few planets created using the randomize all button.

1.4.28 System logs

Gaia Sky provides a couple of ways of accessing system logs.

Session log

Gaia Sky always saves the log of the last session to $GS_DATA/log/gaiasky_log_lastsession.log (check where
$GS_DATA is here). If you need to check the full log of your last session, you can always find it there.

Crash reports

If Gaia Sky crashes, a crash report, together with a full session log to $GS_DATA/crashreports (check where
$GS_DATA is here). Files with the form gaiasky_crash_[date].txt are crash reports, while files with the form
gaiasky_log_[date].txt are full session logs. You can attach these whenever a crash happens and you want to
submit a bug report to our buck tracker.

150 Chapter 1. Contents

_images/randomize-all.jpg
https://codeberg.org/gaiasky/gaiasky/issues

Gaia Sky Documentation

1.5 Advanced topics

Below are some chapters which include in-depth information about some of the internal workings of Gaia Sky. Things
like the maximum allocated heap memory, the data format or the internal reference system are covered here.

1.5.1 The configuration file

There is a configuration file which stores the settings of Gaia Sky. This file is in the YAML format and is located in
$GS_CONFIG/config.yaml (see folders). The default location is:

• Linux: ~/.config/gaiasky/config.yaml

• Windows: C:\Users\[username]\.gaiasky\config.yaml

• macOS: ~/.gaiasky/config.yaml

The default config.yaml file in our code repository is annotated with comments describing each setting.

Contents

• The configuration file

– Program settings

– Controls settings

– Graphics settings

– Data settings

– Scene settings

– Post-processing settings

– Proxy settings

The following sections document the settings that can only be modified by editing the configuration file itself.
The rest of settings can be edited from within Gaia Sky itself, usually using the preferences window or the control
panel. A double colon :: in the list below indicates nested settings.

Program settings

• program::minimap::inWindow – enables the rendering of the mini-map in a window.

• program::net – this group contains the configuration of the REST server, as well as the master-slave infras-
tructure. Find more information in the connect instances section.

• program::scriptsLocation – default location of script files in the file system.

• program::ui::animationMs – duration of UI animations in Gaia Sky, in milliseconds.

• program::url – contains the URLs for the version check (Codeberg API), the data repository mirror and the
data descriptor file.

• program::net – contains the configuration of the REST API (port), and the master/slave instances. See here
for more information.

• program::offlineMode – Gaia Sky won’t attempt any HTTP connection to the internet in this mode. This
means that the data descriptor file containing the information on server datasets can’t be fetched. You need to

1.5. Advanced topics 151

https://yaml.org
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/conf/config.yaml

Gaia Sky Documentation

download the desired datasets manually and extract them in your data folder. More information can be found in
our Gaia Sky datasets repository.

• program::safeMode – this is activated automatically whenever OpenGL incompatibilities are detected at
startup. On macOS, this is on by default. Safe mode disables ‘advanced’ graphics features like 32-bit float
buffers.

Controls settings

• controls::gamepad::blacklist – a list of controller names to blacklist. You can find out the controller
names recognized by Gaia Sky in the controls tab of the preferences window.

Graphics settings

• graphics::useSRGB – use the sRGB color space as a frame buffer format. Only supported by OpenGL 3.2 and
above. If this is activated, the internal format GL_SRGB8_ALPHA8 is used. Only available when safe graphics
mode is not active.

• graphics::backBufferScale – fixed scaling factor for the backbuffer. Increase this to improve image fidelity
at the expense of performance. If dynamic resolution (see this) is enabled, this setting is ignored. This setting is
exposed to the UI as “Dynamic resolution” in the experimental graphics settings section.

Data settings

• data::skybloxLocation – contains the location of the default skybox used for reflections.

Scene settings

• scene::renderer::line::glWidthBias – additive bias to add to the line width when rendering lines using
the driver GL_LINES method. This is useful because the implementation of GL_LINES depends on the vendor
(driver), and different implementations may interpret the line width differently.

• scene::star::textureIndex – the index of the texture used for stars. Star texture files are PNG
files provided by the default-data package, and are of the form $data/default-data/tex/base/
star-texture-[NUM].png.

• scene::star::group::numLabel – the maximum number of labels rendered by any star set. Be careful with
increasing this value, as it may have very negative effects on performance with LOD catalogs (like most of Gaia
DRx).

• scene::octree::maxStars – the maximum number of stars loaded at any single time from LOD catalogs.

• scene::label::number – controls the global number of stars in the scene by lowering the label solid angle
threshold. Increase to get more labels, decrease to get less labels.

• scene::initialization – contains the lazyTexture and lazyMesh properties, which enable the lazy ini-
tialization of textures and meshes respectively.

152 Chapter 1. Contents

https://gaia.ari.uni-heidelberg.de/gaiasky/repository

Gaia Sky Documentation

Post-processing settings

• postprocess::bloom::fboScale – frame buffer scale factor (applied to the current viewport dimensions) to
determine the frame buffer size to render the bloom effect.

• postprocess::lensFlare::type – choose the type of lens flare shader to use. Possible options are SIM-
PLE (a simple, nice-looking lens flare), COMPLEX (uses a complex and more demanding lens flare shader),
and PSEUDO (uses a pseudo lens flare shader, described [here](https://john-chapman.github.io/2017/11/05/
pseudo-lens-flare.html)).

• postprocess::lensFlare::numGhosts – number of ghost artifacts of the pseudo lens flare shader.

• postprocess::lensFlare::haloWidth – halo width of the pseudo lens flare shader.

• postprocess::lensFlare::blurPasses – number of blur passes for the pseudo lens flare shader.

• postprocess::lensFlare::flareSaturation – saturation value for the flare in the pseudo lens flare
shader.

• postprocess::lensFlare::bias – bias value for the original image in the pseudo lens flare shader.

• postprocess::lensFlare::texLensColor – color lookup texture path for the pseudo lens flare shader.

• postprocess::lensFlare::texLensDirt – dirt texture path for all lens flare effects.

• postprocess::lensFlare::texLensStarburst – starburst texture path for all lens flare effects.

• postprocess::lensFlare::fboScale – scale of the frame buffer object to render the pseudo lens flare
effect.

• postprocess::lightGlow::samples – number of samples to use to detect the brightness of the underlying
star in the light glow effect/shader.

• postprocess::warpingMesh::pfmFile – absolute path to a PFM (portable float map) .pfm file that contains
the warping mesh to apply. For more info, see Mesh warping.

Proxy settings

• proxy – configure an HTTP/HTTPS proxy. Find the full documentation to configure a proxy in the proxy con-
figuration section.

1.5.2 Proxy configuration

If you need to configure Gaia Sky to use an HTTP, HTTPS, FTP or SOCKS proxy, you need to set it up at the Java
virtual machine (JVM) level. The official documentation can be found here.

To configure a proxy, we need to pass some arguments to the JVM. Even though you can directly configure the proxy
using JVM arguments, Gaia Sky offers an easier way to set this up using the configuration file. Using the configuration
file has the advantage that it works the same way across all operating systems and packages.

Note: If your proxy requires authentication, please use the direct configuration below. Otherwise Java just ignores the
[protocol].proxy[User|Password] properties, and the direct method ensures the authentication tokens are set up
correctly.

1.5. Advanced topics 153

https://john-chapman.github.io/2017/11/05/pseudo-lens-flare.html
https://john-chapman.github.io/2017/11/05/pseudo-lens-flare.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/net/doc-files/net-properties.html

Gaia Sky Documentation

Use system proxy

The easiest way is to instruct Gaia Sky to use the proxy configured at the operating system level. To do so, open
your config.yaml file (if you don’t know where to find it, see this) you need to set the proxy::useSystemProxies
property to true (:: indicates nesting) in your configuration file:

proxy:
useSystemProxies: true

If not set, this setting defaults to false.

Direct configuration

Here you can enter the parameters of your proxy directly. The properties to set depend on the protocol.

HTTP

You can set the host, the port, the user credentials and the list of hosts that can bypass the proxy:

proxy:
http:

host: a.b.c.d
port: 8080
username: myname
password: secret
nonProxyHosts: a.b.c.d|e.f.g.*|localhost

• host – the hostname, or address, of the proxy server.

• port – the port number of the proxy server. Defaults to 80.

• username – the username, if you need authentication.

• password – the password, if you need authentication.

• nonProxyHosts – the hosts that should be accessed without going through the proxy. The value of this property
is a list of hosts, separated by the ‘|’ character. In addition, the wildcard character ‘*’ can be used for pattern
matching.

HTTPS

You can set the host, the protocol, the user credentials and the list of hosts that can bypass the proxy:

proxy:
https:

host: a.b.c.d
port: 8080
username: myname
password: secret
nonProxyHosts: a.b.c.d|e.f.g.*|localhost

• host – the hostname, or address, of the proxy server.

• port – the port number of the proxy server. Defaults to 80.

154 Chapter 1. Contents

Gaia Sky Documentation

• username – the username, if you need authentication.

• password – the password, if you need authentication.

• nonProxyHosts – the hosts that should be accessed without going through the proxy. The value of this property
is a list of hosts, separated by the ‘|’ character. In addition, the wildcard character ‘*’ can be used for pattern
matching.

SOCKS

You can set the host, the port, the username, the password and the SOCKS version:

proxy:
socks:

host: a.b.c.d
port: 8080
version: 5
username: myname
password: secret

• host – the hostname, or address, of the proxy server.

• port – the port number of the proxy server. Defaults to 80.

• version – the SOCKS protocol version. Defaults to 5, but can also be set to 4.

• username – the username, if you need authentication.

• password – the password, if you need authentication.

FTP

You can set the host, the protocol, the user credentials and the list of hosts that can bypass the proxy:

proxy:
ftp:

host: a.b.c.d
port: 8080
username: myname
password: secret
nonProxyHosts: a.b.c.d|e.f.g.*|localhost

• host – the hostname, or address, of the proxy server.

• port – the port number of the proxy server. Defaults to 80.

• username – the username, if you need authentication.

• password – the password, if you need authentication.

• nonProxyHosts – the hosts that should be accessed without going through the proxy. The value of this property
is a list of hosts, separated by the ‘|’ character. In addition, the wildcard character ‘*’ can be used for pattern
matching.

1.5. Advanced topics 155

Gaia Sky Documentation

1.5.3 Performance

The performance of the application may vary significantly depending on the characteristics of your system. This chapter
describes what are the factors that have an impact in a greater or lesser degree in the performance of the Gaia Sky and
explains how to tweak them. It is organised in two parts, namely GPU performance (graphics performance) and CPU
performance.

Contents

• Performance

– Maximum heap memory

∗ Heap memory on Linux

∗ Heap memory on Windows

∗ Heap memory on macOS

∗ Heap memory when running from source

– Graphics performance

– CPU performance

∗ Multithreading

∗ Limiting FPS

∗ Draw distance (levels of detail)

∗ Smooth transitions

Maximum heap memory

Gaia Sky allocates a maximum heap memory value that can not be circumvented but can be adjusted or modified. If
you encounter an OutOfMemoryError, chances are that your maximum heap memory is not enough for your usage.
The default values are 4 GB (Gaia Sky 3.0.0 and below) and 6 GB (Gaia Sky 3.0.1+).

In order to modify the maximum heap memory, follow the instructions below depending on your operating system.

Heap memory on Linux

On Linux, you need to edit the gaiasky executable script. It is usually located in /opt/gaiasky/ when installed
from your package manager, or wherever you extracted the package if installed from the tar.gz. Edit the script and
find the line with -Xmx?g, where ? is the default max heap memory. Change it to your desired value. For example, if
you want to increase the maximum heap size to 12 GB, set it to -Xmx12g.

If installed using a .deb or .rpm, you need to edit the /opt/gaiasky/gaiasky.vmoptions file and uncomment and
edit the line that reads:

-Xmx512m

into:

-Xmx12g

Where 12g is the desired amount of heap space.

156 Chapter 1. Contents

Gaia Sky Documentation

Heap memory on Windows

On Windows, edit the file gaiasky.vmoptions in your Gaia Sky installation folder, and uncomment the line that
reads # -Xmx512m, setting it to the heap space that you desire. So, in order to set the maximum heap to 12 GB, edit it
from:

Enter one VM parameter per line
For example, to adjust the maixmum memory usage to 512 MB, uncomment the following␣
→˓line:
-Xmx512m
To include another file, uncomment the following line:
-include-options [path to other .vmoption file]

to:

Enter one VM parameter per line
For example, to adjust the maixmum memory usage to 512 MB, uncomment the following␣
→˓line:
-Xmx12g
To include another file, uncomment the following line:
-include-options [path to other .vmoption file]

Heap memory on macOS

On macOS, you need to edit the file vmoptions.txt and uncomment the -Xmx line to suit your needs.

/Applications/Gaia\ Sky.app/Contents/vmoptions.txt

So, in order to set the maximum heap to 12 GB, edit the /Applications/Gaia\ Sky/Contents/vmoptions.txt
from:

Enter one VM parameter per line
For example, to adjust the maixmum memory usage to 512 MB, uncomment the following␣
→˓line:
-Xmx512m
To include another file, uncomment the following line:
-include-options [path to other .vmoption file]

to:

Enter one VM parameter per line
For example, to adjust the maixmum memory usage to 512 MB, uncomment the following␣
→˓line:
-Xmx12g
To include another file, uncomment the following line:
-include-options [path to other .vmoption file]

If you are not comfortable editing files from the terminal, you can just open the Applications folder in Finder, right-
click on Gaia Sky and select “Show Package Contents”. That gives you access to the application folder structure. Use
Finder to navigate to Gaia Sky.app/Contents/ and use your favorite text editor to edit vmoptions.txt.

1.5. Advanced topics 157

Gaia Sky Documentation

Heap memory when running from source

If you run from source you need to edit the core/build.gradle file. In there, you will find a GaiaSkyRun class with
a setup() method. In this method, is a variable definition called maxHeapSpace, whose value you need to modify.
The default value is 6g, for 6 GB of maximum heap space. You can increase it at will.

Graphics performance

Refer to the Graphics performance chapter.

CPU performance

The CPU also plays an obvious role in updating the scene state (positions, orientations, etc.), managing the input and
events, executing the scripts and calling and running the rendering subsystem, which streams all the texturing and
geometric information to the GPU for rendering. This section describes what are the elements that can cause a major
impact in CPU performance and explains how to tune them.

Multithreading

Gaia Sky uses background threads to index and update meta-information on the stars that are currently in view. The
multithreading option controls the number of threads devoted to these indexing and updating tasks. If multithreading
is disabled, only one background thread is used. Otherwise, it uses the defined number of threads in the setting.

Limiting FPS

Gaia Sky offers a way to limit the frames per second. This will ease the CPU of some work, especially if the max FPS
is set to a value lower than 60. To do it, just edit the value in the preferences dialog, performance tab.

Draw distance (levels of detail)

These settings apply only when using a catalog with levels of detail like Gaia DR2+. You can configure whether you
want smooth transitions between the levels (fade-outs and fade-ins) and also the draw distance, which is represented
by a range slider. The draw distance is a solid angle threshold against which we compare the octree nodes to determine
their visibility.

Fig. 83: Draw distance slider in preferences dialog

Basically, the slider sets the view angle above which a particular octree node (axis aligned cubic volume) is marked as
observed and thus its stars are processed and drawn.

• Set the knob to the right to lower the draw distance and increase performance.

• Set the knob to the left to higher the draw distance at the expense of performance.

Find more in-depth information about this in the data streaming section.

158 Chapter 1. Contents

Gaia Sky Documentation

Fig. 84: Octree and levels of detail. Image: Wikipedia.

Smooth transitions

This setting controls whether particles fade in and out depending on the octree view angle. This will prevent pop-ins
when using a catalog backed by an octree but it will have a hit on peformance due to the opacity information being
sent to the GPU continuously. If smooth transitions are enabled, there is a fade-in between the draw distance angle
angle and the draw distance angle + 0.4 rad.

1.5.4 Graphics performance

The Gaia Sky uses OpenGL to render advanced graphics and thus its performance may be affected significantly by your
graphics card. Below you can find some tips to improve the performance of the application by tweaking or deactivating
some graphical effects.

Contents

• Graphics performance

– Graphics quality setting

– Dynamic resolution

– Star brightness

– Star groups

∗ Billboards

∗ Labels

1.5. Advanced topics 159

https://en.wikipedia.org/wiki/Octree
https://www.opengl.org/

Gaia Sky Documentation

∗ Velocity vectors

– Model detail

– Bloom, lens flare and light glow

– Antialiasing

Graphics quality setting

Please see the Visual settings section.

Dynamic resolution

The dynamic resolution can improve the performance in demanding graphics situations and older hardware. See the
Visual settings section for more information.

Star brightness

The star brightness setting has an effect on the graphics performance because it causes more or less stars to be rendered
using the close-by mode where the floating camera transformation is applied in the CPU and the vertices are computed
and sent each frame. The effect on performance should not be too great though, unless your CPU is very old. The star
brightness can be increased or decreased from the Star brightness slider in the Visual settings pane section.

Hint: Ctrl + d - activate debug mode to get some information on how many stars are currently being rendered as
points and quads as well as the frames per second, frame time and more.

Star groups

Star groups are an internal concept in Gaia Sky where a bunch of stars enter and leave the video memory together.
Usually, a single catalog is loaded as a single star group, but it is not always the case. The main exception are the
level-of-detail catalogs. In these, each octree node (octant) maps to a different star group.

A number of quantities are limited at the star group level. These are the maximum number of quad star billboards, the
maximum number of labels and the maximum number of velocity vectors. All of these quantities have a rather strong
impact on performance, and can be modified by editing the configuration file directly. They are not exposed in the GUI.

Billboards

Stars, when close to the camera, are rendered with high quality billboards. Billboards are images which always face
the camera (i.e. their normal vector is aligned with the vector that joins the camera position with the object’s position).

The number of stars that will be rendered as billboards has a strong impact on performance, as we need to compute
the quaternions to rotate the images correctly. This number is capped to a maximum value set in the configuration
file. This number is set to 30 stars per star group by default, but you can edit it by editing the following line in your
config.yaml file.

160 Chapter 1. Contents

Gaia Sky Documentation

scene:
star:

group:
Maximum number of billboards per star group
numBillboard: 30

Labels

Object labels or names in the Gaia Sky are rendered using a special shader which implements distance field fonts. This
means that labels look great at all distances but it is costlier than the regular method.

The label factor basically determines the stars for which a label will be rendered if labels are active. It is a real number
between 1 and 5, and it is used to scale the threshold angle point, which determines the solid angle boundary between
rendering objects as points or as quads to select whether a label should be rendered or not.

The label is rendered if the formula below yields true.

solid_angle > threshold_angle_point / label_factor

The label number factor impacts how many labels are displayed. You can modify this value by editing your config.
yaml file.

scene:
label:

Label number factor. Controls how many stars have labels
number: 1.3

Additionally, the maximum number of labels per star group has a huge impact on performance and is also defined in
the configuration file. The default value is 50.

scene:
star:

group:
Maximum number of labels per star group
numLabels: 50

Velocity vectors

When active, velocity vectors can become a big toll on performance. To mitigate that, you can adjust the number of
vectors shown using the slider at the bottom of the type visibility pane.

Moreover, the maximum number of velocity vectors per star group is defined in the configuration file. The default value
is 500.

scene:
star:

group:
Maximum number of velocity vectors per star group
numVelocityVector: 500

1.5. Advanced topics 161

Gaia Sky Documentation

Model detail

Some models (mainly spherical planets, planetoids, moons and asteroids) are automatically generated when the Gaia
Sky is initializing and accept parameters which tell the loader how many vertices the model should have. These pa-
rameters are set in the json data files and can have an impact on devices with low-end graphics processors. Let’s see
an example:

{
"model" : {

"args" : [true],
"type" : "sphere",
"params" : {

"quality" : 150,
"diameter" : 1.0,
"flip" : false
},

"texture" : {
"base" : "data/tex/neptune.jpg",
}

}
}

The quality parameter specifies here the number of both vertical and horizontal divisions that the sphere will have.

Additionally, some other models, such as that of the Gaia spacecraft, come from a binary model file .g3db. These
models are created using a 3D modeling software and then exported to either .g3db (bin) or .g3dj (JSON) using
fbx-conv. You can create your own low-resolution models and export them to the right format. Then you just need to
point the json data file to the right low-res model file. The attribute’s name is model.

{
"model" : {

"args" : [true],
"model" : "data/models/gaia/gaia.g3db"

}
}

Bloom, lens flare and light glow

All post-processing algorithms (those algorithms that are applied to the image after it has been rendered) take a toll on
the graphics card and can be disabled.

Hint: Disable the light glow effect for a significant performance boost in low-end graphics cards

• The bloom is not very taxing on fairly capable GPUs, but might be on integrated graphics.

• The lens flare effect is a bit harder on the GPU, but most modern cards should be able to handle it with no
problems. In order of cost, from less costly to more costly, the shaders are SIMPLE, PSEUDO, COMPLEX.

• The light glow effect is far more demanding, and disabling it can result in a significant performance gain in some
GPUs. It samples the image around the principal light sources using a spiral pattern and applies a light glow
texture which is rather large.

To disable these post-processing effects, find the controls in the UI window, as described in the graphics configuration
section.

162 Chapter 1. Contents

https://github.com/libgdx/fbx-conv

Gaia Sky Documentation

Antialiasing

Antialiasing is a term to refer to a number of techniques for reducing jagged edges, stairstep-like lines that should
be smooth. It reduces the jagged appearance of lines and edges, but it also makes the image smoother. The result are
generally better looking images, even though this depends on the resolution display device.

There are several groups of anti-aliasing techniques, some of them implemented in the Gaia Sky and available for you
to choose from the graphics settings. They all come at a cost, which may vary depending on your system.

Name Type Description
No An-
tialiasing

No an-
tialiasing

This has no cost since it does not apply any antialiasing technique.

FXAA Post-
processing

This has a mild performance cost and produces reasonably good results. If you have a
good graphics card, this is super-fast.

NFAA Post-
processing

Based on the creation of a normal map to identify edges, this is slightly costlier than
FXAA but it may produce better results in some devices.

Here are some sample images.

1.5. Advanced topics 163

Gaia Sky Documentation

Name Image

No Antialiasing

FXAA

NFAA

Some graphics drivers allow you to override the anti-aliasing settings of applications with some default configuration
(usually MSAA or FXAA). To use this, select No antialiasing in Gaia Sky.

Find more information on anti-aliasing in the Visual settings section.

1.5.5 Internal reference system

The internal cartesian reference system is a right-handed equatorial system with the particularity that the axes labels are
unorthodox. Usually, 𝑋 points to the fundamental direction (𝛼 = 0, 𝛿 = 0), 𝑍 points “up” and 𝑋𝑌 is the fundamental
plane (𝛿 = 0), with 𝑌 = 𝑍 ×𝑋 .

In our case, it is 𝑍 which points to the fundamental direction (𝛼 = 0, 𝛿 = 0), 𝑌 points up and 𝑋𝑍 is the fundamental
plane (𝛿 = 0), with 𝑋 = 𝑌 × 𝑍. In order to convert from common equatorial cartesian coordinates (𝑋𝑌 𝑍) to Gaia
Sky coordinates (𝑋 ′𝑌 ′𝑍 ′), you just need to swap the axes:

• 𝑋 ′ = 𝑌

164 Chapter 1. Contents

Gaia Sky Documentation

• 𝑌 ′ = 𝑍

• 𝑍 ′ = 𝑋

Or, what is the same, (𝑋 ′𝑌 ′𝑍 ′) = (𝑌 𝑍𝑋), and (𝑋𝑌 𝑍) = (𝑍 ′𝑋 ′𝑌 ′).

Description

So, in Gaia Sky 𝑋𝑍 is the equatorial plane (𝛿 = 0). 𝑍 points towards the vernal equinox point (𝛼 = 0, 𝛿 = 0). 𝑌
points towards the north celestial pole (𝛿 = +90∘). 𝑋 is perpendicular to both 𝑍 and 𝑌 and points to 𝛼 = +90∘ so
that 𝑋 = 𝑌 × 𝑍.

Fig. 85: Gaia Sky reference system

All the positions and orientations of the entities in the scene are at some point converted to this reference system for
representation. The same happens with the orientation sensor data in mobile devices.

1.5. Advanced topics 165

Gaia Sky Documentation

Internal units

Internally, the objects in Gaia Sky are positioned using Internal Units. The default Internal Units (𝑖𝑢) are defined as
follows:

• 1𝑖𝑢 = 1 * 109𝑚

When running in Virtual Reality mode, and only for the duration of the session, the Internal Units are scaled as follows:

• 1𝑖𝑢 = 1 * 105𝑚

1.5.6 Data format

Gaia Sky needs to first load datasets in order to display data. Dataset files contain objects, which are organized by Gaia
Sky into a scenegraph. A scenegraph is a tree that contains objects and orders them hierarchically depending on their
geometrical and spatial relations.

Contents

• Data format

– Where are the data files defined?

∗ $data/[dataset-name]/dataset.json example

∗ default-data/dataset.json example file

– Data loaders

– Catalog formats

∗ Star catalogs

· Regular star catalogs

· Level-of-detail star catalogs

∗ Particle catalogs

– JSON data format

∗ Data morphology

∗ Objects vs Updates

∗ Basic attributes

∗ Proper motions

∗ Magnitudes

∗ Labels

∗ Coordinates and ephemerides

· Orbit coordinates

· Static coordinates

· VSOP87

· VSOP2000

· Chebyshev polynomials

166 Chapter 1. Contents

Gaia Sky Documentation

· Heliotropic orbits

· Moon AA coordinates

· Pluto coordinates

· Python scripting coordinates

∗ Model objects

· Orientation

· Model

· Clouds

· Atmospheric scattering parameters

∗ Mesh objects

∗ Orbits

∗ Grids and other special objects

∗ Affine transformations

∗ Reference system transformations

– Creating your own catalog loaders

– Loading data using scripts

All datasets are partially or totally described in a JSON format. Each dataset lives in its own directory in the data
location (referred to as $data/, see folders), and must contain a description in the file dataset.json. If a dataset
does not have this file in its directory, it won’t be recognized by Gaia Sky.

Below is an example of the contents of the data location.

$data/
default-data/

dataset.json
...

catalog-hipparcos/
dataset.json
...

catalog-whitedwarfs-dr2/
dataset.json
...

.../

Where are the data files defined?

Gaia Sky implements a very flexible and open data loading mechanism. The data files to be loaded are defined in a
couple of keys in the config.yaml configuration file, which is usually located in the $GS_CONFIG folder (see folders).
The keys are the following (double-colon indicates nesting):

• data::dataFiles – an array containing the list of enabled JSON data files. Each file should be a relative path
from the data directory with the prefix $data/. For instance, the default dataset, containing the Solar System and
some necessary objects for Gaia Sky to run, is specified in the array as $data/default-data/dataset.json.

1.5. Advanced topics 167

Gaia Sky Documentation

$data/[dataset-name]/dataset.json example

Dataset descriptor files contain the metadata of a catalog (name, description, version, etc.) and a pointer to the actual
data. Below is a made-up file file dataset.json which describes my super-awesome dataset.

{
"key" : "dataset-key-without-spaces",
"name": "Dataset name",
"version": 1,
"mingsversion" : 30106,
"type": "catalog-gaia",
"description": "The description here.\nCan contain line breaks.",
"releasenotes" : "- What changed since the last version?\n- List here."
"link": "https://arxiv.org/abs/1805.00425",
"check" : "dataset-descriptor.json"
"size": 368633,
"nobjects": 1365,
"check": "$data/my-dataset/dataset.json",
"files": ["$data/my-dataset"],
"data": [{

"loader": "gaiasky.data.JsonLoader",
"files": ["$data/my-dataset/particles-particles.json"]

}]
}

Notice that the data (data::files) points to another JSON file, which contains some additional info about how to
load the data, and a pointer to the actual data file particles-particles.json. Here it is:

{
"objects": [{

"name": "My dataset",
"position": [0.0, 0.0, 0.0],
"componentType": "Stars",
"fadeout": [1.0e5, 0.5e8],
"parent": "Universe",
"archetype": "StarGroup",
"provider": "gaiasky.data.group.STILDataProvider",
"datafile": "$data/my-dataset/catalog/dataset.vot"
}]

}

As you can see, the STILDataProvider is the one in charge of loading the data form this dataset, which resides in a
VOTable file, dataset.vot.

168 Chapter 1. Contents

Gaia Sky Documentation

default-data/dataset.json example file

This is an example of what the default data pack contains. The dataset descriptor file loads different files using different
loaders.

{
"data" : [

{
"loader": "gaiasky.data.JsonLoader",
"files": ["$data/default-data/planets-normal.json",

"$data/default-data/moons-normal.json",
"$data/default-data/satellites.json",
"$data/default-data/asteroids.json",
"$data/default-data/orbits_planet.json",
"$data/default-data/orbits_moon.json",
"$data/default-data/orbits_asteroid.json",
"$data/default-data/orbits_satellite.json",
"$data/default-data/extra-low.json",
"$data/default-data/locations.json",
"$data/default-data/locations_earth.json",
"$data/default-data/locations_moon.json"]

},
{

"loader": "gaiasky.data.GeoJsonLoader",
"files": ["$data/default-data/countries/countries.geo.json"]

}]
}

The dataset.json file contains an array, "data", which is a list of pairs containing [loader: files] correspon-
dences. Each "loader" contains the classes that will load the list of files under the corresponding "files" property.
The main loader, the JsonLoader, expects JSON files as inputs. Each of these files must have an attribute called
"objects", which is an array containing the metadata on the objects to load.

Data loaders

The files are sent to the Scene Graph JSON Loader, which iterates on each loader-files pair in each file, instantiates the
loader and uses it to load the files. All loaders need to adhere to a contract, defined in the interface ISceneLoader
(here). The loadData() method of each loader must return a list of objects, which is then added to a global list
containing all the previously loaded files. At the end, we have a list with all the objects in the scene. This list is passed
on to the Scene Graph instance, which constructs the scene graph tree structure which will contains the object model.

As we said, each loader will load a different kind of data; the JSONLoader (here) loads JSON files containing planets,
satellites, orbits, star catalogs, etc. The STILDataProvider (here) loads VOTables, FITS, CSV and other files through
the STIL library, GeoJsonLoader (here) loads geographic data, and so on.

1.5. Advanced topics 169

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/api/ISceneLoader.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/JsonLoader.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/STILDataProvider.java
http://www.star.bristol.ac.uk/~mbt/stil/
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/GeoJsonLoader.java

Gaia Sky Documentation

Catalog formats

Catalogs refer to datasets which are essentially particle-based (stars, galaxies, etc.). There are several off-the-shelf
options to get catalog data in various formats into Gaia Sky. The most important are VOTable, FITS and CSV. They are
all handled by the STIL data provider. The way they are defined in Gaia Sky is the same any other object is defined,
that is, using JSON descriptor files.

Let’s see an example of the definition of one such catalog (the Oort cloud) using JSON:

{
"name" : "Oort cloud",
"position" : [0.0, 0.0, 0.0],
"color" : [0.9, 0.9, 0.9, 0.8],
"size" : 2.0,
"labelColor" : [0.3, 0.6, 1.0, 1.0],
"labelPosition" : [0.0484814, 0.0, 0.0484814],
"componentType" : "Others",

"fadeIn" : [0.0004, 0.004],
"fadeOut" : [0.1, 15.0],

"profileDecay" : 1.0,

"parent" : "Universe",
"archetype" : "ParticleGroup",

"provider" : "gaiasky.data.PointDataProvider",
"factor" : 149.597871,
"dataFile" : "$data/oort-cloud/oortcloud/oort_10000particles.dat"

}

This is based on the ParticleSet component, which is fully documented here. Let’s go over the attributes that appear
in this example:

• name – The name of the particle group.

• position – The mean cartesian position (see internal reference system) in parsecs, used for sorting purposes
and also for positioning the label. If this is not provided, the mean position of all the particles is used.

• color – The color of the particles as an rgba array.

• size – The size of the particles. In a non HiDPI screen, this is in pixel units. In HiDPI screens, the size will be
scaled up to maintain the proportions.

• labelColor – The color of the label as an rgba array.

• labelPosition – The cartesian position (see internal reference system) of the label, in parsecs.

• componentType (alias: ct) – The ComponentType (see here). This is basically a string that will be matched
to the entity type in ComponentType enum. Valid component types are Stars, Planets, Moons, Satellites,
Atmospheres, Constellations, etc.

• fadeIn – The fade in inetrpolation distances, in parsecs. If this property is defined, there will be a fade-in effect
applied to the particle group between the distance fadeIn[0] and the distance fadeIn[1].

• fadeOut – The fade out inetrpolation distances, in parsecs. If this property is defined, there will be a fade-in
effect applied to the particle group between the distance fadeIn[0] and the distance fadeIn[1].

170 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/render/ComponentTypes.java#L114

Gaia Sky Documentation

• profileDecay – This attribute controls how particles are rendered. This is basically the opacity profile decay
of each particle, as in (1.0 - dist)^profileDecay, where dist is the distance from the center (center dist is
0, edge dist is 1).

• parent – The name of the parent object in the scene graph.

• archetype (alias: impl) – The archetype name (or legacy class name, but this should be avoided).

• provider – The full name of the data provider class. This must extend gaiasky.data.api.
IParticleGroupDataProvider (see here).

• factor – A factor to be applied to each coordinate of each data point. If not specified, defaults to 1.

• dataFile – The actual file with the data. It must be in a format that the data provider specified in provider
knows how to load.

• texture – Optional attribute that points to a texture or directory with textures to render the particles of this set
with. If this is available, profileDecay is ignored.

• textures – Same as texture, but with an array of textures and/or directories.

Star catalogs

Star catalogs are special because, additionally to positional information, they contain extra properties such as proper
motions, magnitudes, colors and more. All of these are important to be able to render stars faithfully.

The easiest way to load star catalogs is by loading them from VOTable files. Let’s see how these catalogs can be
defined in Gaia Sky. For example, the new Hipparcos reduction uses this dataset.json file that contains some
catalog metadata and pointers to the actual data files:

{
"key": "catalog-hipparcos",
"name" : "Hipparcos (new reduction)",
"version" : 4,
"mingsversion" : 30301,
"type" : "catalog-star",
"description" : "Hipparcos new reduction (van Leeuwen, 2007) with curated star names.",
"releasenotes" : "- Add type in catalog descriptor file.\n- Update to new data format.

→˓",
"link" : "http://adsabs.harvard.edu/abs/2007ASSL..350.....V",
"size" : 5433174,
"nobjects" : 177955,
"check": "$data/catalog-hipparcos/dataset.json",
"files" : ["$data/catalog-hipparcos"],
"data" : [
{
"loader": "gaiasky.data.JsonLoader",
"files": ["$data/catalog-hipparcos/particles-hip.json"]

}]
}

The file particles-hip.json contains a single object with the actual pointer to the VOTable data file, and some
additional metadata such as the color of labels, a description of the catalog or the data provider:

{
"objects" : [
{

(continues on next page)

1.5. Advanced topics 171

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/api/IParticleGroupDataProvider.java

Gaia Sky Documentation

(continued from previous page)

"name" : "Hipparcos (new red.)",
"position" : [0.0, 0.0, 0.0],
"color" : [1.0, 1.0, 1.0, 0.25],
"size" : 6.0,
"labelColor" : [1.0, 1.0, 1.0, 1.0],
"labelPosition" : [0.0, -5.0e7, -4.0e8],
"componentType" : "Stars",

"fadeout" : [21.0e2, 0.5e5],

"profiledecay" : 1.0,

"parent" : "Universe",
"archetype" : "StarGroup",

"catalogInfo" : {
"name" : "Hipparcos",
"description" : "Hipparcos new reduction (van Leeuwen, 2007). 117995 stars.",
"type" : "INTERNAL"

},

"provider" : "gaiasky.data.group.STILDataProvider",
"dataFile" : "$data/catalog-hipparcos/catalog/hipparcos/hipparcos.vot"

}
]}

Regular star catalogs

Gaia Sky supports all formats supported by the STIL library. Since the data held by the formats supported by STIL is
not of a unique nature, this catalog loader makes a series of assumptions. More information can be found in STIL data
provider.

Particularly, it is possible to directly load a VOTable, CSV, FITS or ASCII file into Gaia Sky using the Open file
icon at the bottom of the control panel.

Level-of-detail star catalogs

Gaia Sky uses level-of-detail structures to represent catalogs with hundreds of millions of stars. This broad and deep
topic is covered in its own section:

• Level-of-detail: Octree.

172 Chapter 1. Contents

http://www.star.bristol.ac.uk/~mbt/stil/

Gaia Sky Documentation

Particle catalogs

Particle catalogs (point cloud data) can be loaded from CSV, VOTable or FITS files (see STIL data loader), or also
from a fast and compact binary format. More information can be found in the particle catalogs section.

JSON data format

Most of the entities and celestial bodies that are not stars in the Gaia Sky scene are defined in a series of JSON files
and are loaded using the JsonLoader (here). The format is very flexible and loosely matches the underneath object
model, which is a scene graph tree.

An example about defining an extrasolar system with a couple of stars orbiting each other and a couple of planets can
be found here.

Data morphology

Before starting, we need to do a little detour to cover the data morphology. In Gaia Sky, objects organize and store their
data into components, conforming to the Entity Component System (ECS) paradigm. Components are simple bags of
data (attributes). Objects in Gaia Sky are assigned an archetype, which are simple component groups.

• Archetype – an archetype is a definition of a group of components to create objects of a certain type. Ever object
has one and only one archetype. The archetype is specified with the "archetype" or the "impl" attributes,
and take in the name of the archetype (case sensitive!). For instance, the Planet archetype contains, amongst
others, the components Base, Model, Coordinates and Atmosphere.

• Component – a component is a simple bag of data. For example, the Base component contains a color, the object
type, and the object name or names. Components are mostly hidden from users, as they are not defined directly
in the JSON data files. Instead, components define what attributes are accepted by each object. An exhaustive
list of all the attributes per component, together with descriptions and data types, is provided in Components.

Depending on the archetype of an object (i.e. depending on the components it has), objects are processed differently
by different systems. Additionally, archetypes can extend other archetypes, so that the extending archetype gets all the
components defined in the parent.

You can find a full description of all the archetypes and components in the data format, together with their attributes,
here:

• Archetypes.

• Components.

Objects vs Updates

Every JSON file that contains objects must have a named array as the only top-level object in the file. Depending on
the name of this array, two things can happen:

• objects – when the array is named objects, it contains new objects to load.

• updates – when the array is named updates, it contains updates to pre-existing objects.

Objects in updates arrays are kept and applied at the end of the loading stage, when all objects in objects array have
been loaded. They are matched by name.

So far, only the following objects and attributes can be updated:

1.5. Advanced topics 173

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/JsonLoader.java

Gaia Sky Documentation

• material – material and all its sub-attributes. In particular all, regular textures, cubemaps and virtual tex-
tures: - diffuse, diffuseCubemap, diffuseSVT. - specular, specularCubemap, specularSVT. - normal,
normalCubemap, normalSVT. - height, heightCubemap, heightSVT. - emissive, emissiveCubemap,
emissiveSVT. - metallic, metallicCubemap, metallicSVT. - roughness, roughnessCubemap,
roughnessSVT.

• cloud – describes the cloud layer. Can also have a virtual texture. - diffuse, diffuseCubemap, diffuseSVT.

• atmosphere – all its direct attributes.

• rotation – all its direct attributes.

See the virtual textures section for some examples.

Basic attributes

All archetypes have the Base, the Body and the GraphNode components. These components hold basic attributes,
which can be specified with these (usually required) keys:

• name – The name of the object. You can specify multiple names in a string array by using the names key.

• color – The color of the object. This will translate to the line color in orbits, to the color of the point for planets
when they are far away and to the color of the grid in grids.

• componentType (alias: ct) – The ComponentType (see here). This is basically a string that will be matched
to the entity type in ComponentType enum. Valid component types are Stars, Planets, Moons, Satellites,
Atmospheres, Constellations, etc.

• archetype (alias: impl) – The archetype name (or legacy package and class name of the implementing class).

• parent – The name of the parent entity.

Additionally, different types of entities accept different additional parameters which are matched to the model using
reflection. Here are some examples of these parameters:

• sizeKm (with variants sizePc, sizeM, sizeAU, size) – The diameter of the entity. The unitless version uses
internal units.

• pos (with variants position, positionKm, positionPc, posKm, posPc) – The position of the object. This is
the position at epoch (if the object has proper motion), or just a static position. Given in cartesian coordinates in
the internal reference system.

• labelColor – Color of the label of this object.

Below is an example of a simple entity, the equatorial grid:

{
"name" : "Equatorial grid",
"color" : [1.0, 0.0, 0.0, 0.5],
"size" : 1.2e12,
"componentType" : "Equatorial",

"parent" : "Universe",
"archetype" : "SphericalGrid"

}

174 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/render/ComponentTypes.java#L48

Gaia Sky Documentation

Proper motions

Objects of an archetype with a ProperMotion component can define proper motion attributes:

• muAlpha (muAlphaMasYr) – The 𝜇𝛼⋆, in mas/yr.

• muDelta (muDeltaMasYr) – The 𝜇𝛿 , in mas/yr.

• radialVelocity (radialVelocityKms) – The radial velocity in km/s.

• epochJd (epochYear) – The proper motion epoch as a Julian date, or as a year fraction (2015.5).

Magnitudes

Objects of an archetype with a Magnitude component can define an apparent and absolute magnitudes.

• appMag – The apparent magnitude.

• absMag – The absolute magnitude.

The apparent and absolute magnitudes are only used in celestial bodies. In stars, if only one is set, the other is computed
automatically. If both are set, consistency is not checked together with the distance. Also in stars, the absolute
magnitude is used to compute a pseudo-size which is used for rendering purposes only. See the star rendering section
for more information.

Labels

All labels in Gaia Sky are applied the component type of the object they are attached to, plus the “Labels” component
type. Here are some of the attributes related to labels. Attributes marked with a star (*) can only be applied to objects
whose archetype has a Label component.

• label* – Whether to render the label at all. Takes in a boolean.

• labelColor – The color of the label, as a RGBA array.

• forceLabel – Whether to force-display the label for this entity, regardless of distance and size.

• labelPositionPc* (labelPositionKm, labelPosition) – Override the position of the label.

• labelFactor* – Factor to apply to the size of the label for this object.

• labelMax* – Internal rendering factor, should not be set externally unless you know what you are doing.

• textScale* – Internal rendering factor, should not be set externally unless you know what you are doing.

Coordinates and ephemerides

Within the coordinates object (see the Coordinates component) one specifies how to get the positional data
of the entity given a time. This object contains a reference to the implementation class (which must implement
IBodyCoordinates here) and the necessary parameters to initialize it. There are currently a few implementations
that can be used with the "impl" attribute. They are described in the following sub-sections.

1.5. Advanced topics 175

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/util/coord/IBodyCoordinates.java

Gaia Sky Documentation

Orbit coordinates

Using OrbitLintCoordinates, the coordinates of the object are linearly interpolated using its orbit, which is defined
in a separated entity. See the orbits section for more info. The name of the orbit entity must be given. For instance, the
Hygieia moon uses orbit coordinates.

{
"coordinates" : {

"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitName" : "Hygieia orbit"

}
}

Static coordinates

Use StaticCoordinates to specify a static position (or a position at epoch for entities with proper motion). This is
equivalent to using the top-level pos attribute, which also specifies the position at epoch. Static coordinates can also
be applied a transformation using the transformMatrix and transformName attributes. The position may be given
in cartesian or spherical coordinates.

• position (with variants: positionKm, positionPc) – position in cartesian coordinates in the internal refer-
ence system.

• positionEquatorial – equatorial coordinates (𝛼 [deg], 𝛿 [deg], and distance [parsecs]).

• positionEcliptic – ecliptic coordinates (𝜆 [deg], 𝛽 [deg], and distance [parsecs]).

• positionGalactic – ecliptic coordinates (l [deg], b [deg], and distance [parsecs]).

{
"coordinates" : {

"impl" : "gaiasky.util.coord.StaticCoordinates",
"position" : [-2.169e17, -1.257e17, -1.898e16]

}
}

VSOP87

All classes that extend AbstractVSOP87 provide ephemerides for the major planets. These implement the VSOP87
analytical solution. Our implementation of VSOP87 contains a class for each body, with all the terms hard-coded. For
instance, to set up VSOP87 ephemeris for the Earth use the following:

{
"coordinates" : {

"impl" : "gaiasky.util.coord.vsop87.EarthVSOP87",
"orbitName" : "Earth orbit"

}
}

176 Chapter 1. Contents

Gaia Sky Documentation

VSOP2000

Implementation of the analytical planetary solution VSOP2000. You just need to point to the file for the particular
bodies. Data files are available for Mercury, Venus, Earth, Moon, the Earth-Moon barycentre, Mars, Jupiter, Saturn,
Uranus, Neptune and Pluto in ftp://syrte.obspm.fr/francou/vsop2000/. In order to use those, use the VSOP2000 class
with the desired data file.

{
"coordinates" : {

"impl" : "gaiasky.util.coord.vsop2000.VSOP2000",
"dataFile" : "/path/to/data/vsop2000-p03.dat",
"orbitName" : "Earth orbit"

}
}

Chebyshev polynomials

Implementation of Chebyshev polynomials using the coefficients to compute the Ephemeris. Just like VSOP2000, each
body needs a different data file, containing the coefficients for the body.

{
"coordinates" : {

"impl" : "gaiasky.util.coord.chebyshev.ChebyshevEphemeris",
"dataFile" : "/path/to/data/EARTH.position.data",
"orbitName" : "Earth orbit"

}
}

Heliotropic orbits

Provides coordinates of objects in heliotropic orbits using those orbits’ data, like Gaia or JWST. The implementation
is in HeliotropicOrbitCoordinates.

Moon AA coordinates

MoonAACoordinates contains a special implementation of the algorithm described in the book Astronomical Algo-
rithms by Jean Meeus that provides the position of the Moon.

Pluto coordinates

PlutoCoordinates is a special implementation, described here, which provides very fast but not very accurate posi-
tions for Pluto.

1.5. Advanced topics 177

https://www.researchgate.net/publication/251149954_Analytical_Planetary_solution_VSOP2000_Celestial_Mech_Dyn_Astron
ftp://syrte.obspm.fr/francou/vsop2000/
http://www.stjarnhimlen.se/comp/ppcomp.html#14

Gaia Sky Documentation

Python scripting coordinates

PythonBodyCoordinates, reserved for coordinate providers implemented in Python via scripting. This object uses
IPythonCoordinatesProvider instances implemented in a Python script to source coordinates. For more informa-
tion, see this section.

Model objects

Planets, moons, asteroids, etc. all use the model object Planet (here). This provides a series of utilities that make
their JSON specifications look similar.

Orientation

Orientations in Gaia Sky may be given in two different formats:

• Rigid rotation – the orientation is described with basic rotation parameters such as the period, inclination, axial
tilt, etc.

• Quaternion orientation – the orientation of the object is sourced from an entity that provides quaternions.

Rigid rotation
The rigidRotation map (aliased to rotation) describes, as you may imagine, the rigid rotation of the body in ques-
tion by means of a series of parameters. Rotations are stored in the Orientation component, and use the rigidRotation
map. A rigid rotation is described by the following parameters:

• period – The rotation period in hours.

• axialtilt – The axial tilt is the angle between the equatorial plane of the body and its orbital plane. In degrees.

• inclination – The inclination is the angle between the orbital plane and the ecliptic. In degrees.

• ascendingnode – The ascending node in degrees.

• meridianangle – The meridian angle in degrees.

For instance, the rotation of Mars:

{
"rigidRotation": {

"period" : 24.622962156,
"axialtilt" : 25.19,
"inclination" : 1.850,
"ascendingnode" : 47.68143,
"meridianangle" : 176.630

}
}

Quaternion orientation
Some objects like satellites are typically oriented using quaternions. Since every satellite may have its own attitude
analytical implementation, we support a generic way of providing quaternions, based on the orientation provider and
source. The orientation provider contains the name of a class that extends OrientationServer.

We provide two general implementations, based on the spherical linear interpolation of quaternions (QuaternionSler-
pOrientationServer) and on normalized linear interpolation (QuaternionNlerpOrientationServer. These implementa-
tions read the quaternion data from a CSV file in the following format:

178 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/scenegraph/Planet.java
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/api/OrientationServer.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/orientation/QuaternionSlerpOrientationServer.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/orientation/QuaternionSlerpOrientationServer.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/orientation/QuaternionNlerpOrientationServer.html

Gaia Sky Documentation

time-iso-8601,x,y,z,w

For example, a valid quaternion slerp file would be quaternions.csv:

#time,x,y,z,w
2020-01-01T12:00:00Z,0.0,0.0,0.0,1.0
2020-02-01T12:00:00Z,1.0,0.0,0.0,0.0
2020-03-01T12:00:00Z,0.0,1.0,0.0,0.0
2020-04-01T12:00:00Z,0.0,0.0,1.0,0.0
2020-05-01T12:00:00Z,0.0,0.0,0.0,1.0

Each line contains:

• Time [ISO-8601] – the time of the quaternion.

• x – x component.

• y – y component.

• z – z component.

• w – w component.

Once we have the file, we can use it in our object by using the Orientation properties orientationProvider and
orientationSource.

{
"orientationProvider": "gaiasky.data.orientation.QuaternionSlerpOrientationServer",
"orientationSource": "path/to/quaternions.csv"

}

We also offer a specific implementation of OrientationServer for Gaia in the form of the GaiaAttitudeServer.

Model

This section describes the format to specify models, but omits the procedural generation attributes. These are docu-
mented in the procedural generation section.

The model object describes the model which must be used to represent the entity. Models are described in the Model
component, and can have two origins:

• They may come from a 3D model file. In this case, you just need to specify the file.

{
"model": {
"args" : [true],
"model" : "$data/default-data/models/gaia/gaia.g3db"

}
}

• They may be generated on the fly. In this case, you need to specify the type of model, a series of parameters
and the material.

{
"model": {
"args" : [true],

(continues on next page)

1.5. Advanced topics 179

https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/util/gaia/GaiaAttitudeServer.html

Gaia Sky Documentation

(continued from previous page)

"type" : "sphere",
"staticLight" : true,
"useColor" : "false",
"ambientLevel" : 0.5,
"ambientColor" : [0.1, 0.3, 0.6, 1.0],
"params" : {
"quality" : 180,
"diameter" : 1.0,
"flip" : false
},

"material" : {
"diffuse" : "$data/default-data/tex/base/earth-day*.jpg",
"diffuseCubemap" : "$data/default-data/tex/cubemap/earth-day*",
"diffuseSVT" : {
"location" : "$data/virtualtex-earth-diffuse/tex",
"tileSize" : 1024

},
"specular" : "$data/default-data/tex/base/earth-specular*.jpg",
"normal" : "$data/default-data/tex/base/earth-normal*.jpg",
"emissive" : "$data/default-data/tex/base/earth-night*.jpg",
"hieght" : "$data/default-data/tex/base/earth-height*.jpg",
"heightScale" : 8.12,
"reflection" : [1.0, 1.0, 0.0]

}
}

• type – the type of model. Possible values are sphere, disc, cylinder and ring.

• staticLight – this attribute takes in a boolean (true or false) or a floating point number. If present, this
disconnects the ambient light of this model from the global ambient level, and does not apply directional lighting
to the model. If set to true, the ambient level of this model is set to the default 0.6. Otherwise, it is set to the
given floating-point value in [0,1].

• useColor – a boolean that indicates that the object color (in the color attribute) is to be used as the model
color. If this is true, the object color is set as a model diffuse color attribute.

• ambientLevel – a single floating-point value with the ambient light level (in [0,1]) to apply to this model. If
present, the model is disconnected from the global ambient light setting.

• ambientColor – a 3- or 4-component color (RGB or RGBA) for the ambient light of this model. If present, the
model is disconnected from the global ambient light setting.

• params – parameters of the model. This depends on the type. The quality is the number of both horizontal and
vertical divisions. The diameter is the diameter of the model and flip indicates whether the normals should
be flipped to face outwards. The ring type also accepts innerradius and outerradius.

• material – properties of the material, such as textures, reflections, elevation, etc.

– diffuse – the diffuse texture to use.

– diffuseCubemap – the location of the 6 sides of the diffuse cubemap to use. Takes precedence over
diffuse. The sides must be images with the _bk.jpg, _ft.jpg, _up.jpg, _dn.jpg, _rt.jpg, _lf.jpg
suffixes. The file formats can be JPG or PNG. Can be applied to all channels (specular, normal, emissive,
height, metallic, roughness, etc.) More information on this can be found in the cubemaps section.

– diffuseSVT – an object with a location (path) and a tileSize (integer). Defines a diffuse virtual
texture for this model. Can be applied to more channels. More information on this cam be found in the

180 Chapter 1. Contents

Gaia Sky Documentation

virtual texture section.

– specular – the specular map to produce specular reflections. This attribute also accepts a specular index
or a specular color (RGB). More than one can be specified.

– normal – normal map to produce extra detail in the lighting.

– emissive – emissive texture, color or value. For planets, this acts as the night texture, which is applied
to the part of the model in the shade. This attribute also accepts an emissive color (RGB) and an emissive
index.

– height – height map which will be represented with tessellation or parallax mapping (see elevation
(height)) and whose scale is defined in heightScale (in Km).

– heightScale – indicates the extent, in Km, of the top mapping value in the height map (corresponding to
full white, or RGB [1,1,1]). When the elevation multiplier slider is set to 1, the highest point in the height
map is displaced by this amount of kilometers.

– roughness – roughness texture, color or value for the PBR shader.

– metallic – metallic texture or value for the PBR shader.

– ao – ambient occlusion texture for the PBR shader.

– diffuseScattering – a color (vec[3]) or a single floating point number with the diffuse scattering value
for this model. Diffuse scattering weighs the diffuse color and re-emits it if there are no shadows.

– occlusionMetallicRoughness – occlusion/metallic/roughness texture (in R, G and B channels respec-
tively) texture for the PBR shader. Follows the glTF specification.

– reflection – specifies an index or a color. If this is present, the default skymap will be used to generate
reflections on the surface of the material. Hint: look up the Reflections object in Gaia Sky. It is defined
in satellites.json.

Additionally, we may use the following attributes for ringed models, also in the material group:

• ringDiffuse – diffuse texture for the ring.

• ringNormal – diffuse texture for the ring.

• ringDiffuseScattering – a color (vec[3]) or a single floating point number with the diffuse scattering value
for this model. Diffuse scattering weighs the diffuse color and re-emits it if there are no shadows.

Clouds

This defines the clouds layer (see Cloud component). It can be procedurally generated or described with textures. Here
we deal only with the textures mode. Let’s see:

"cloud" : {
"size" : 6395.0,
"cloud" : "$data/default-data/tex/base/earth-cloud*.jpg",

"params" : {
"quality" : 200,
"diameter" : 2.0,
"flip" : false

}
}

1.5. Advanced topics 181

Gaia Sky Documentation

Contains the size of the cloud model, its parameters (quality, diameter, etc.) and the clouds texture. The clouds
are combined with the planet using the equation:

𝐶𝑟𝑒𝑠𝑢𝑙𝑡 = 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 × 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 + 𝐶𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 × 𝐹𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

where 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 is 1, and 𝐹𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is 1− 𝐶𝑠𝑜𝑢𝑟𝑐𝑒.

Atmospheric scattering parameters

Planet atmospheres can also be defined using this object (see Atmosphere component). The atmosphere object gets a
number of physical quantities that are fed in the atmospheric scattering algorithm (Sean O’Neil, GPU Gems).

{
"atmosphere" : {

"size" : 6600.0,
"wavelengths" : [0.650, 0.570, 0.475],
"m_Kr" : 0.0025,
"m_Km" : 0.0015,
"m_eSun" : 1.0,
"fogdensity" : 2.5,
"fogcolor" : [1.0, 0.7, 0.6],

"params" : {
"quality" : 180,
"diameter" : 2.0,
"flip" : true

}
}

}

The parameters are the following:

• size – radius of the sphere model used for the atmosphere, in km.

• wavelengths– the values of 1
𝜆4 for the red, green and blue channels. These are the Rayleigh scattering rates of

different light wavelengths.

• Kr – Rayleigh scattering constant.

• Km – Mie scattering constant.

• eSun – the brightness of the illuminating star.

• fog density – density of the simulated fog when inside the atmosphere.

• fog color – the color of the fog.

Mesh objects

Gaia Sky supports Galaxy-size arbitrary meshes. These are usually used to represent iso-density surfaces for stars,
dust or HII regions, among others. Mesh objects have all the regular attributes of model bodies (name, description,
color, size, etc.). Additionally, we offer three shading modes for meshes:

• additive – renders the mesh with transparency via additive blending. The DR2 hot star and HII density meshes
use this shading mode.

182 Chapter 1. Contents

https://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html

Gaia Sky Documentation

• dust – renders an opaque mesh. An opacity value is computed for the edges (𝑉 ·𝑁), where 𝑉 is the pixel view
vector from the camera and 𝑁 is the normal vector at that pixel. Opacity is rendered using dithering to avoid
sorting issues.

• regular – renders the mesh with the regular, general-purpose per-pixel lighting shader.

In order to specify the shading mode, a new top-level attribute "shading" : "additive|dust|regular" must be
used:

{
"name" : "DR3 star density",
"description" : "Star density iso-surface based on DR3 data",
"color" : [0.95, 0.2, 0.2, 0.75],
"size" : 3.0856775814913705E7,
"labelcolor" : [0.95, 0.1, 0.1, 1.0],
"shading" : "regular",
"labelposition" : [1000.0, 0.0, 0.0],
"componentType" : "Meshes",

"fadeout" : [60000.0, 90000.0],

"parent" : "Universe",
"archetype" : "MeshObject",

"transformName" : "galacticToEquatorialF",

"model" : {
"args" : [true],
"staticLight" : true,
"model" : "$data/mesh-dr3-stardenstiy/meshes/dr3/star_density.obj"

}
}

Orbits

When we talk about orbits in this context we talk about orbit lines. In the Gaia Sky orbit lines may be created from two
different sources. The sources are used by a class implementing the IOrbitDataProvider (here) interface, which is
also specified in their orbit object. Orbits are stored in the Trajectory component.

• An orbit data file. In this case, the orbit data provider is OrbitFileDataProvider.

• The orbital elements, where the orbit data provider is OrbitalParametersProvider.

If the orbit is sampled it comes from an orbit data file. In the Gaia Sky the orbits of all major planets are sampled, as
well as the orbit of Gaia. For instance, the orbit of Venus.

{
"name" : "Venus orbit",
"color" : [1.0, 1.0, 1.0, 0.55],
"componentType" : "Orbits",

"parent" : "Sol",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitFileDataProvider",

(continues on next page)

1.5. Advanced topics 183

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/orbit/IOrbitDataProvider.java

Gaia Sky Documentation

(continued from previous page)

"orbit" : {
"source" : "$data/default-data/orb.VENUS.dat",

}
}

If the orbit is defined with its orbital elements, the elements need to be specified in the orbit object. For example, the
orbit of Phobos.

{
"name" : "Phobos orbit",
"color" : [0.7, 0.7, 1.0, 0.4],
"componentType" : "Orbits",

"parent" : "Mars",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"orbit" : {
"period" : 0.31891023,
"epoch" : 2455198,
"semiMajorAxis" : 9377.2,
"eccentricity" : 0.0151,
"inclination" : 1.082,
"ascendingNode" : 16.946,
"argOfPericenter" : 157.116,
"meanAnomaly" : 241.138,
"mu" : 9.9e18

}
}

The orbit object is represented with the orbital elements:

• period – in days.

• epoch – in Julian days.

• semiMajorAxis – in km.

• eccentricity – no units.

• inclination – in degrees.

• ascendingNode – in degrees.

• argOfPericenter – in degrees.

• meanAnomaly – in degrees.

• mu – 𝐺 *𝑀 of central body (gravitational constant). Defaults to the Sun’s. This will be anyway automatically
recomputed from the period (𝑇) and the semi-major axis (𝑎), if set, as 𝜇 = 4 * 𝜋2𝑎3/𝑇 2.

Note that if the epoch is fully defined, the argOfPericenter is not needed.

The orbital elements of extrasolar systems are typically given in a special reference system. In this reference system,
the reference plane is the plane whose normal is the line of sight vector from the Sun to the planet or star for whom
the orbit is defined. The reference direction is the direction from the object to the north celestial pole projected on
the reference plane. In order to apply such a transformation automatically, Gaia Sky provides an additional attribute

184 Chapter 1. Contents

https://en.wikipedia.org/wiki/Orbital_elements

Gaia Sky Documentation

"model" to objects of the archetype Orbit. When this attribute has the value "extasolar_system", the abovemen-
tioned transformation is applied automatically. The default value of "model" is "default". Below is an example:

{
"name": "J0805+4812 star orbit",
"color": [
1.0,
0.0,
1.0,
1.0

],
"componentType": [

"Orbits",
"Stars"

],
"parent": "J0805+4812 Center",
"archetype": "Orbit",
"provider": "gaiasky.data.orbit.OrbitalParametersProvider",
"model": "extrasolar_system",
"newMethod": true,

"trail" : true,
"trailMap" : 0.5,

"fadeDistanceUp" : 50.0,
"fadeDistanceDown" : 100.0,

"orbit": {
"period": 735.9078666506588,
"epoch": 2457397.4170103897,
"semiMajorAxis": 48464416.969729796,
"eccentricity": 0.4203524474493615,
"inclination": 107.89617887219426,
"ascendingNode": 175.09066812003118,
"argOfPericenter": 326.7130552945523,
"meanAnomaly": 0.0,
"mu": 9.9998e+21

}
}

At object level, we can set the following attributes to control some visual properties:

• trail – fades the orbit as it gets further away from the object in the direction opposite to travel. By default, the
end closest to the object position is mapped to 1, and the furthermost position from the object is mapped to 0.

• trailMap – the bottom mapping position for the trail. The orbit trail assigns an opacity value to each point of
the orbit, where 1 is the location of the object and 0 is the other end. This mapping parameter defines the location
in the orbit (in [0,1]) where we map the opacity value of 0. Set to 0 to have a full trail. Set to 0.5 to have a trail
that spans half the orbit. Set to 1 to have no orbit at all.

• fadeDistanceUp – orbits with a body fade out as the camera get closer to the body. This is the far distance, in
body radius units, where the orbit starts the fade (mapped to 1). This attribute only has effect if this trajectory
has a body attached to it.

• fadeDistanceDown – orbits with a body fade out as the camera get closer to the body. This is the near distance,
in body radius units, where the orbit finishes the fade (mapped to 0). This attribute only has effect if this trajectory

1.5. Advanced topics 185

Gaia Sky Documentation

has a body attached to it.

Grids and other special objects

There are a last family of objects which do not fall in any of the previous categories. These are grids and other objects
such as the Milky Way (inner and outer parts). These objects usually have a special implementation and specific
parameters, so they are a good example of how to implement new objects.

{
"name" : "Galactic grid",
"color" : [0.3, 0.5, 1.0, 0.5],
"size" : 1.4e12,
"componentType" : "Galactic",
"transformName" : "equatorialToGalactic",

"parent" : "Universe",
"archetype" : "Grid"

}

For example, the grids accept a parameter transformName, which specifies the geometric transform to use. In the
case of the galactic grid, we need to use the equatorialToGalactic transform to have the grid correctly positioned
in the celestial sphere.

Affine transformations

Model objects (meshes, shapes, models, etc.) of an archetype that contains an AffineTransformations component can
define arbitrary affine transformations (rotation, translation, scale) in any order, as top-level attributes. These transfor-
mations will be applied to the local transformation matrix of the model in the same order they are defined in the JSON
file.

The supported attributes, and their names, are:

• translate – contains a 3-vector with a translation in internal units.

Example: "translate" : [2.0, 0.0, 5.0].

• translatePc – contains a 3-vector with a translation in parsecs.

Example: "translatePc" : [2.0, 0.0, 5.0].

• translateKm – contains a 3-vector with a translation in parsecs.

Example: "translateKm" : [25000.0, 0.0, 0.0].

• scale – contains either a single floating-point value or a 3-vector with the scaling factor, in local model coordi-
nates.

Example: "scale" : [1.0, 1.0, 2.0], scales the model ×2 in the Z component.

• rotate – contains a 4-vector where the first three components are the rotation axis, and the last component is
the rotation angle in degrees.

Example: "rotate": [1.0, 0.0, 0.0, 45.0], rotates the model 45∘ around the
(︀
1 0 0

)︀
vector.

For instance, the following JSON object,

186 Chapter 1. Contents

Gaia Sky Documentation

{
"name": "Object name",
"color": [0.4, 0.4, 1.0, 0.4],
"labelColor": [0.4, 0.4, 1.0, 1.0],
"labelFactor": 0.0004,
"sizePc": 1.0,
"componentType": "Others",
"parent": "Parent name",
"archetype": "ShapeObject",
"renderGroup": "MODEL_VERT_ADDITIVE",

"rotate": [0.0, 1.0, 0.0, 60.0],
"scale": [2.0, 0.5, 0.5],

"coordinates": {
"impl": "gaiasky.util.coord.StaticCoordinates",
"position": [0.0, 0.0, 0.0]

},
"model": {
"args": [true],
"staticLight": true,
"type": "sphere",
"primitiveType": "lines",
"blendMode": "additive",
"params": { "quality": 30, "diameter": 1.0, "flip": true }

}
}

defines a sphere which is scaled ×2 in X and ×0.5 in Y and Z, and rotated around the Y axis 60∘.

Reference system transformations

Gaia Sky uses an equatorial internal reference system. Objects of an archetype that contains a RefSysTransform
component can specify reference system transformations directly in the JSON file as top-level attributes using the
"transformName" or "transformFunction" names. These attributes take in a string with the name of the transfor-
mation. The possible values are:

• “transformFunction”: “equatorialToEcliptic”
• “transformFunction”: “equatorialToGalactic”
• “transformFunction”: “eclipticToEquatorial”
• “transformFunction”: “eclipticToGalactic”
• “transformFunction”: “galacticToEquatorial”
• “transformFunction”: “galacticToEcliptic”

These essentially get transform to a 4x4 matrix with the necessary reference system rotation.

Additionally, it is possible to specify the 16 values of the matrix themselves, in column-major order, using the top-level
attributes "transformMatrix" or the alias "transformValues".

Example:

1.5. Advanced topics 187

Gaia Sky Documentation

{
"name": "Object name",
"color": [0.4, 0.4, 1.0, 0.4],
"labelColor": [0.4, 0.4, 1.0, 1.0],
"labelFactor": 0.0004,
"sizePc": 1.0,
"componentType": "Others",
"parent": "Parent name",
"archetype": "ShapeObject",
"renderGroup": "MODEL_VERT_ADDITIVE",

"transformMatrix": [0.7660444431189781, 0.0, -0.12855752193730788, 0.0,
0.0, 0.5, 0.0, 0.0,
0.6427876096865394, 0.0, 0.15320888862379564, 0.0,
0.0, 0.0, 0.0, 1.0],

"coordinates": {
"impl": "gaiasky.util.coord.StaticCoordinates",
"position": [0.0, 0.0, 0.0]

},
"model": {
"args": [true],
"staticLight": true,
"type": "sphere",
"primitiveType": "lines",
"blendMode": "additive",
"params": { "quality": 30, "diameter": 1.0, "flip": true }

}
}

Creating your own catalog loaders

If you want to load your data files into Gaia Sky, chances are that the STIL data provider can already do it.

If you still need to create your own loader, keep reading.

In order to create a loader for your catalog, one only needs to provide an implementation to the ISceneLoader (here)
interface.

public interface ISceneLoader {
public List<Entity> loadData() throws FileNotFoundException;
public void initialize(String[] files, Scene scene) throws RuntimeException;

}

The main method to implement is List<Entity> loadData() (here), which must return a list of Entity objects.

But how do we know which file to load? You need to create a dataset.json descriptor file, add your loader there and
create the properties you desire. Usually, there is a property called files which contains a list of files to load. Once
you’ve done that, implement the initialize(String[], Scene) (here) method knowing that all the properties
defined in the dataset.json file with your catalog loader as a prefix will be passed in the Properties p object
without prefix.

Also, you will need to connect this new catalog file with the Gaia Sky configuration so that it is loaded at startup. To
do so, locate your config.yaml file (usually under $GS_CONFIG, see folders) and add your new file to the property

188 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/api/ISceneLoader.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/api/ISceneLoader.java#L31
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/api/ISceneLoader.java#L21

Gaia Sky Documentation

data::catalogFiles. You can also drop your new catalog into a subdirectory in the data directory and enable it
using the dataset manager in Gaia Sky.

Add your implementing jar file to the classpath (usually putting it in the lib/ folder should do the trick) and you are
good to go.

You can use existing loaders as examples, such as the OctreeLoader (here) to see how it works.

Loading data using scripts

Data can also be loaded at any time from a Python script. See the scripting section for more info.

1.5.7 STIL data loader

Gaia Sky supports the loading of catalog data in VOTable, FITS, CSV and ASCII. using the STIL library. To ensure
the catalogs are loaded correctly, some preparation might be needed in the form of UCDs and/or column names and
units. The following sections describe the expected UCDs and column names for the different data types and units.

Contents

• STIL data loader

– Object IDs

– Object names

– Positions

– Proper motions and radial velocities

– Magnitudes

– Colors

– Variability

– Other columns

The class in charge of loading data using STIL is the STILDataProvider.

Note: In all cases, UCDs take precedence over column names. That is, if a UCD is present for a given column, the
column name is ignored. This means that if the UCD is incorrect, the column data won’t be recognized and used even
if the column name is correct.

Object IDs

Columns with the UCD meta.id are recognized as generic identifiers. Otherwise, the actual matching is done by
column name. The following are recognized:

• id – generic ID

• hip – HIP number

• source_id – Gaia source ID

1.5. Advanced topics 189

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/OctreeLoader.java
http://www.star.bristol.ac.uk/~mbt/stil/
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/group/STILDataProvider.html

Gaia Sky Documentation

Object names

Names are taken from the columns name, proper, proper_name, common_name and designation.

Also, the regular expression "(name|NAME|refname|REFNAME)((_|-)[\\w\\d]+)?" is matched against column
names to find names. This matches anything which starts with name or NAME or refname plus an optional suffix
starting with a hyphen or an underscore.

The loader supports multiple names in a single value. The connecting character used is |, so that if multiple names are
to be loaded, they must be in a column with one of the above names and the format name-1|name-2|...|name-n.

Positions

For the positional data, Gaia Sky will look for spherical and cartesian coordinates. In the case of spherical coordinates,
the following are UCDs supported:

• Equatorial: pos.eq.ra, pos.eq.dec

• Galactic: pos.galactic.lon, pos.galactic.lat

• Ecliptic: pos.ecliptic.lon, pos.ecliptic.lat

The units should be specified as column metadata. If units are not there, Gaia Sky will use degrees for coordinate
angles (ra, dec, lat, lon, etc.), mas for parallaxes and parsecs for distances.

If UCDs are not possible (i.e. CSV format), the sky positions should be given in the equatorial system and have the
following column names and units:

• Right ascension: ra, right_ascension, alpha in degrees

• Declination: dec, de, declination, delta in degrees

To work out the distance, it looks for the UCDs pos.parallax and pos.distance. If either of those are found, they
are used. If no UCDs are to be found, the column names plx, parallax, pllx and par are accepted. If there are no
parallaxes, the default parallax of 0.04 mas is used. As previously mentioned, parallaxes are in mas by default, and
distances are in parsecs, unless stated otherwise in column unit metadata.

With respect to cartesian coordinates, it recognizes the UCDs pos.cartesian.x|y|z, and they are interpreted in the
equatorial system by default.

Proper motions and radial velocities

Proper motions are supported using only the UCDs pm.eq.ra and pm.eq.dec. Otherwise, the following column
names are checked, assuming the units to be in mas/yr.

• RA: pmra, pmalpha, pm_ra

• DEC: pmdec, pmdelta, pm_dec, pm_de

Radial velocities are supported through the UCD dopplerVeloc and through the column names radvel and
radial_velocity.

190 Chapter 1. Contents

Gaia Sky Documentation

Magnitudes

Magnitudes are supported using the phot.mag or phot.mag;stat.mean UCDs. Otherwise, they are discovered
using the column names mag, bmag, gmag, phot_g_mean_mag. If no magnitudes are found, the default value of 15 is
used.

Apparent magnitudes are converted to absolute magnitudes with:

𝑀 = 𝑚− 5𝑙𝑜𝑔10(𝑑𝑝𝑐) + 5

where 𝑀 is the absolute magnitude and 𝑚 is the apparent magnitude. 𝑑𝑝𝑐 is the distance to the star in parsecs.

The absolute magnitude is then converted to a pseudo-size with an algorithm that converts first to a luminosity, and
then adjusts the size with an experimental calibration.

Colors

Colors are discovered using the phot.colorUCD. If not present, the column names b_v, v_i, bp_rp, bp_g and g_rp
are used, if present. If no color is discovered at all, the default value of 0.656 is used as the color index.

The conversion from color index to RGB is done by converting the XP (BP-RP) color index to 𝑇𝑒𝑓𝑓 , and then the 𝑇𝑒𝑓𝑓

to RGB, using the xp_to_teff() and teff_to_rgb() methods implemented here.

Variability

Variable stars are loaded if light curves (magnitude vs time) and periods are found in the column list. The magnitude
list, time list and period are looked up using their column names:

• Magnitude list: A list of [mag] is expected under g_transit_mag, g_mag_list, g_mag_series

• Time list: A list of Julian dates (offset from J2010, i.e. 𝑡 = 𝐽𝐷 − 2455197.5) under g_transit_time,
time_list, time_series

• Period: A period in Julian days under pf, period

Only variable stars with a period will be loaded. The rest will be skipped.

Other columns

All the columns which do not fit in the aforementioned categories are loaded as extra attributes. These attributes can
be used for filtering and color mapping the dataset.

Right now, additional physical quantities (mass, flux, effective temperature (𝑇𝑒𝑓𝑓), radius, etc.) fall into the ‘other
columns’ category and are also loaded as extra attributes.

1.5.8 Star catalog formats

Star catalogs can be loaded from well-known formats (VOTable, CSV, etc.) using the STIL data loader, or they can
use a binary format tailor-made for Gaia Sky. In general, the binary format loads much faster and is more compact.
That’s why we use it for our big level-of-detail star catalogs based on Gaia data.

Contents

• Star catalog formats

1.5. Advanced topics 191

https://codeberg.org/gaiasky/gaiasky-catgen/src/branch/master/src/color.rs#L13

Gaia Sky Documentation

– Binary format specification

∗ Metadata file

· Version 0

· Version 1

∗ Star particle files

· Version 0

· Version 1

· Version 2

– LOD catalog processing

∗ Catalogs

∗ Distances

∗ Magnitude/color corrections

This section discusses the level-of-detail (LOD) datasets (from Gaia DR2 on) where not all data fits into the CPU
memory (RAM) and especially the GPU memory (VRAM).

In order to solve the issue, Gaia Sky implements a LOD structure based on the spatial distribution of stars into an octree.
The culling of the octree is determined using a draw distance setting, called 𝜃. 𝜃 is actually the minimum visual solid
angle (as seen from the camera) of an octant for it to be observed and its stars to be rendered. Larger 𝜃 values lead to
less octants being observed, and smaller 𝜃 values lead to more octants being observed.

Balancing the loading of data depends on several parameters:

• The maximum java heap memory (set to 4 Gb by default), let’s call it maxheap.

• The available graphics memory (VRAM, video ram). It depends on your graphics card. Let’s call it VRAM.

• The draw distance setting , 𝜃.

• The maximum number of loaded stars, 𝜈. This is in the configuration file ($GS_CONFIG/config.yaml) under
the key scene::octree::maxstars. The default value balances the maximum heap memory space and the
default data set.

So basically, a low 𝜃 (below 50-60 degrees) means lots of observed octants and lots of stars. Setting 𝜃 very low causes
Gaia Sky to try to load lots of data, eventually overflowing the heap space and creating an OutOfMemoryError. To
mitigate that, one can also increase the maximum heap space.

Finally, there is the maximum number of loaded stars, 𝜈. This is a number is set according to the maxheap setting.
When the number of loaded stars is larger than 𝜃, the loaded octants that have been unobserved for the longest time
will be unloaded and their memory structures will be freed (both in GPU and CPU). This poses a problem if the draw
distance setting is set so that the observed octants at a single moment contain more stars than than 𝜃. That is why high
values for 𝜃 are recommended. Usually, values between 60 and 80 are fine, depending on the dataset and the machine.

𝜃 Draw distance, minimum visual solid angle for octants to be rendered

𝜈 Maximum number of stars in memory at a given time

192 Chapter 1. Contents

Gaia Sky Documentation

Binary format specification

Gaia catalogs contain typically hundreds of millions of stars. They are too large to fit in your neighbor’s consumer GPU.
In order to be able to represent such catalogs in real time, Gaia Sky implements a level-of-detail algorithm backed by
an octree. The data format of all level-of-detail catalogs is a custom binary format to make it more compact and fast to
load. This binary format can, however, also be used for smaller star catalogs. This section contains its specification.

There are two types of files: the metadata (metadata.bin) and the particle files (particles_xxxxxxx.bin). The
metadata file contains all the nodes of the octree (called octants). Each octant points to a particle file, containing its
particles. The number in the particle file name is the identifier of the octant. Additionally, the particle files can also be
used for standalone smaller star catalogs.

The distance units are internal units.

Metadata file

The metadata reader is implemented here. The metadata file contains the information of the octants of the octree. The
metadata format has currently two possible versions, 0 and 1, which are automatically detected by Gaia Sky.

Version 0

Version 0 (legacy) does not contain its version number in the file itself. Instead, if the first four bytes interpreted as an
integer are zero or positive, version 0 is assumed. The format is the following.

• 1 single-precision integer (32-bit) – number of octants in the file

• For each octant:

– 1 single-precision integer (32-bit) – Page ID - ID of current octant

– 3 single-precision float (32-bit * 3) – X, Y, Z cartesian coordinates in internal units

– 1 single-precision float (32-bit) – Octant half-size in X

– 1 single-precision float (32-bit) – Octant half-size in Y

– 1 single-precision float (32-bit) – Octant half-size in Z

– 8 single-precision integer (32-bit * 8) – IDs of the 8 children (-1 if no child)

– 1 single-precision integer (32-bit) – Level of octant (depth)

– 1 single-precision integer (32-bit) – Cumulative number of stars in this node and its descendants

– 1 single-precision integer (32-bit) – Number of stars in this node

– 1 single-precision integer (32-bit) – Number of children nodes

Version 1

Version 1 was introduced in Gaia Sky 3.0.4, and starts with a negative integer in the first four bytes, typically -1. Then
comes the version number. The main difference with the legacy version is that the page IDs are encoded with a 64-bit
integer instead of 32.

• 1 single-precision integer (32-bit) – special token number -1, signaling the presence of a version number

• 1 single-precision integer (32-bit) – version number (1 in this case)

• 1 single-precision integer (32-bit) – number of octants in the file

1.5. Advanced topics 193

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/MetadataBinaryIO.java

Gaia Sky Documentation

• For each octant:

– 1 double-precision integer (64-bit) – Page ID - ID of current octant

– 3 single-precision float (32-bit * 3) – X, Y, Z cartesian coordinates in internal units

– 1 single-precision float (32-bit) – Octant half-size in X

– 1 single-precision float (32-bit) – Octant half-size in Y

– 1 single-precision float (32-bit) – Octant half-size in Z

– 8 double-precision integer (64-bit * 8) – IDs of the 8 children (-1 if no child)

– 1 single-precision integer (32-bit) – Level of octant (depth)

– 1 single-precision integer (32-bit) – Cumulative number of stars in this node and its descendants

– 1 single-precision integer (32-bit) – Number of stars in this node

– 1 single-precision integer (32-bit) – Number of children nodes

Star particle files

A particle file contains the information of a number of stars. These can be the stars belonging to a particular octant in
a LOD octree, or all the stars in a particular star catalog.

The class in charge of loading and writing binary star particle files is the BinaryDataProvider.

The binary readers/writers are implemented in the following files:

• Interface (BinaryIO)

• Base implementation (BinaryIOBase)

• Version 0 (DR1 and DR2, now outdated)

• Version 1 (used in the currently public eDR3 catalogs, same as version 0, but without tycho IDs)

• Version 2 (the new version, much more compact and small)

Version 0 was used in DR2, version 1 was used mainly in the first batch of eDR3. Version 2 is used in the second batch
of eDR3 and future DRs. Versions 0 and 1 are not annotated, so they are detected using the file name. Starting from
version 2, the version number is in the file header, using a special token (negative integer).

Version 0

The version 0 is specified below. It contains a header with the number of stars and then a bunch of data for each star.
It contains a 3-integer set which is the Tycho identifier, mainly for compatibility with TGAS.

• 1 single-precision integer (32-bit) – number of stars in the file

• For each star:

– 3 double-precision floats (64-bit * 3) – X, Y, Z cartesian coordinates in internal units

– 3 double-precision floats (64-bit * 3) – Vx, Vy, Vz - cartesian velocity vector in internal units per year

– 3 double-precision floats (64-bit * 3) – mualpha, mudelta, radvel - proper motion

– 4 single-precision floats (32-bit * 4) – appmag, absmag, color, size - Magnitudes, colors (encoded), and
size (a derived quantity, for rendering)

– 1 single-precision integer (32-bit) – HIP number (if any, otherwise negative)

194 Chapter 1. Contents

https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/group/BinaryDataProvider.html
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/BinaryIO.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/BinaryIOBase.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/BinaryVersion0.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/BinaryVersion1.java
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/BinaryVersion2.java

Gaia Sky Documentation

– 3 single-precision integer (32-bit * 3) – Tycho identifiers

– 1 double-precision integer (64-bit) – Gaia SourceID

– 1 single-precision integer (32-bit) – namelen -> Length of name

– namelen * char (16-bit * namelen) – Characters of the star name, where each character is encoded with
UTF-16

Version 1

Version 1 is the same as version 0 but without the Tycho identifiers.

• 1 single-precision integer (32-bit) – number of stars in the file

• For each star:

– 3 double-precision floats (64-bit * 3) – X, Y, Z cartesian coordinates in internal units

– 3 double-precision floats (64-bit * 3) – Vx, Vy, Vz - cartesian velocity vector in internal units per year

– 3 double-precision floats (64-bit * 3) – mualpha, mudelta, radvel - proper motion

– 4 single-precision floats (32-bit * 4) – appmag, absmag, color, size - Magnitudes, colors (encoded), and
size (a derived quantity, for rendering)

– 1 single-precision integer (32-bit) – HIP number (if any, otherwise negative)

– 1 double-precision integer (64-bit) – Gaia SourceID

– 1 single-precision integer (32-bit) – namelen -> Length of name

– namelen * char (16-bit * namelen) – Characters of the star name, where each character is encoded with
UTF-16

Version 2

This version is much more compact, and it uses smaller data types when possible. The header contains a token integer
(-1) marking the following version number, plus the number of stars.

• 1 single-precision integer (32-bit) – special token number -1, signaling the presence of a version number

• 1 single-precision integer (32-bit) – version number (2 in this case)

• 1 single-precision integer (32-bit) – number of stars in the file

• For each star:

– 3 double-precision floats (64-bit * 3) – X, Y, Z cartesian coordinates in internal units

– 3 single-precision floats (32-bit * 3) – Vx, Vy, Vz - cartesian velocity vector in internal units per year

– 3 single-precision floats (32-bit * 3) – mualpha, mudelta, radvel - proper motion

– 4 single-precision floats (32-bit * 4) – appmag, absmag, color, size - Magnitudes, colors (encoded), and
size (a derived quantity, for rendering)

– 1 single-precision integer (32-bit) – HIP number (if any, otherwise negative)

– 1 double-precision integer (64-bit) – Gaia SourceID

– 1 single-precision integer (32-bit) – namelen -> Length of name

1.5. Advanced topics 195

Gaia Sky Documentation

– namelen * char (16-bit * namelen) – Characters of the star name, where each character is encoded with
UTF-16

The RGB color of stars uses 8 bits per channel in RGBA, and is encoded into a single float using the libgdx Color class.

Some discussion on memory issues and the streaming loader can be found here.

LOD catalog processing

All LOD catalogs are based on one of the Gaia data releases (DR2, DR3, etc.), and they also include the brighter stars
from the Hipparcos catalog. The official Gaia-Hipparcos crossmatch is used to identify stars that are contained in both
catalogs. In this case, the parallax is taken from the source that has the smaller parallax error. The rest of de data is
taken from the Gaia catalog, but some attributes are merged (for instance, the final star contains both the HIP number
and the Gaia source id).

The LOD catalogs are generated using a program written in Rust, called gaiasky-catgen. The source code can be
found in this repository. In the LOD generation process, each star is processed individually. The catalog is filtered
according to the input parameters, and some corrections are applied to star attributes.

Catalogs

For each Gaia data release, we offer a selection of subsets which contain different cuts of the whole data. These subsets
are typically computed using the criterion of parallax relative error, which measures how large the error in parallax
is with respect to the parallax value. We define a cut-off value, 𝑠, which is the maximum percentage of the parallax
allowed for the errors, in [0,1]:

𝑒𝑟𝑟𝑝𝑙𝑙𝑥 < 𝑝𝑙𝑙𝑥 * 𝑠

where 𝑒𝑟𝑟𝑝𝑙𝑙𝑥 is the parallax error, and 𝑝𝑙𝑙𝑥 is the parallax for that source. As we mentioned above, 𝑠 is the cut-off
percentage value, in [0,1]. The cut-off value is usually split into two different values, one for bright stars and one for
faint stars. What are bright stars and what are faint stars?

• Bright – 𝐺𝑚𝑎𝑔 < 13.1

• Faint – 𝐺𝑚𝑎𝑔 >= 13.1

So, for example, the DR3 default catalog contains all stars up to 20%/1.5% parallax relative error for bright/faint stars.
This means that all bright stars where the error is not larger than 20% of the parallax are included, and all faint stars
where the error is not larger than 1.5% of the parallax are also included.

See all the LOD catalogs we offer in our data server:

• Current catalogs (DR3).

Distances

In most catalogs, distances are derived from parallaxes, using the formula

𝑑[𝑝𝑐] = 1000/𝑝𝑙𝑙𝑥[𝑚𝑎𝑠].

All parallaxes are zero-point corrected as instructed in the official DR documentation before being converted to dis-
tances. Sometimes, some parallaxes are negative. In this case, Gaia Sky opts for keeping the star and assigning it a
default parallax of 0.04 mas, which corresponds to 25 kpc instead of discarding it.

However, some catalogs use distances determined elsewhere by different methods and injected into the generation
process as additional columns. This is the case for the geometric (Bayesian) distances and the photometric distances
catalogs.

196 Chapter 1. Contents

https://github.com/libgdx/libgdx/blob/master/gdx/src/com/badlogic/gdx/graphics/Color.java#L360
https://codeberg.org/gaiasky/gaiasky-catgen
https://gaia.ari.uni-heidelberg.de/gaiasky/repository/catalog/dr3/

Gaia Sky Documentation

Magnitude/color corrections

Extinction and reddening factors are applied to star magnitudes and colors, respectively.

When the extinction value 𝐴𝑔 is present in the catalog or in an additional column, it is applied directly to the magnitude.
Otherwise, we default to the following analytical extinction,

𝐴𝑔 = min(3.2,
150

|sin(𝑏)|
* 5.9𝑒− 4),

where 𝑏 is the galactic longitude of the star.

Similarly, we apply the reddening value 𝐸𝐵𝑃−𝑅𝑃 when it is in the catalog or in an additional column. Otherwise, we
fall back to the following analytical determination, based on the extinction:

𝐸𝐵𝑃−𝑅𝑃 = min(1.6, 𝐴𝑔 * 2.9𝑒− 4).

1.5.9 Particle catalog formats

In order to load simple particles (also referred to as point clouds), Gaia Sky accepts catalogs in common formats like
VOTable or CSV (see the STIL data loader section), but also in a tailor-made binary format that is fast and compact.
This binary format can load simple particles (of type PARTICLE, only contain a position) and also extended particles
(of type PARTICLE_EXT, which contain positions, but also proper motions, colors, magnitudes, etc.). This format is
used, for instance, in the most recent versions of the SDSS catalogs.

The class in charge of loading and writing binary particle catalogs is the BinaryPointDataProvider.

The binary format loads much faster than regular VOTable or CSV files, and is described below.

• 1 single-precision integer (32-bit) – number of particles in the file

• 1 byte (8-bit) – boolean (1: true, 0: false) indicating whether to use extended particles or not

• For each particle:

– 1 double-precision integer (64-bit) – particle identifier

– 1 single-precision integer (32-bit) – namelen -> Length of name

– namelen * char (16-bit * namelen) – characters of the particle name. Each character is encoded with UTF-
16

– 1 double-precision float (64-bit) – right ascension [deg]

– 1 double-precision float (64-bit) – declination in [deg]

– 1 double-precision float (64-bit) – distance [pc]

– if extended particles:

∗ 1 single-precision float (32-bit) – 𝜇𝛼⋆ [mas/yr]

∗ 1 single-precision float (32-bit) – 𝜇𝛿 [mas/yr]

∗ 1 single-precision float (32-bit) – radial velocity [km/s]

∗ 1 single-precision float (32-bit) – apparent magnitude

∗ 1 single-precision float (32-bit) – packed color

∗ 1 single-precision float (32-bit) – particle pseudo-size

The packed color format uses 8 bits per channel in RGBA, and is encoded into a single-precision floating point number
using the libgdx Color class.

1.5. Advanced topics 197

https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/latest/gaiasky/data/group/BinaryPointDataProvider.html
https://github.com/libgdx/libgdx/blob/master/gdx/src/com/badlogic/gdx/graphics/Color.java#L360

Gaia Sky Documentation

1.5.10 Archetypes

Below is a table with all the archetypes in Gaia Sky. For each archetype, we list its parent (if any) and its Components.

A general description of archetypes and components is provided in Data morphology.

All archetypes are: SceneGraphNode, Universe, CelestialBody, ModelBody, Planet, Particle, Star, Satellite, He-
liotropicSatellite, GenericSpacecraft, Spacecraft, StarCluster, Billboard, BillboardGalaxy, VertsObject, Polyline, Or-
bit, HeliotropicOrbit, FadeNode, GenericCatalog, MeshObject, BackgroundModel, SphericalGrid, RecursiveGrid,
BillboardGroup, Text2D, Axes, Loc, Area, ParticleGroup, StarGroup, Constellation, ConstellationBoundaries, Cos-
micRuler, OrbitalElementsGroup, Invisible, OctreeWrapper, Model, ShapeObject, KeyframesPathObject, VRDevice-
Model.

Table 2: Archetypes table
Archetype Parent Components

SceneGraphNode

Base
Body
GraphNode
Octant
Render

Universe

Base
Body
GraphNode
GraphRoot

CelestialBody SceneGraphNode

Celestial
Magnitude
Coordinates
Orientation
Label
SolidAngle
Focus
Billboard

continues on next page

198 Chapter 1. Contents

Gaia Sky Documentation

Table 2 – continued from previous page
Archetype Parent Components

ModelBody CelestialBody

Model
RenderType
ModelScaffolding
AffineTransformations

Planet ModelBody

Atmosphere
Cloud

Particle CelestialBody

ProperMotion
RenderType
ParticleExtra

Star Particle

Hip
Distance
Model
ModelScaffolding

Satellite ModelBody

ParentOrientation

HeliotropicSatellite Satellite

TagHeliotropic

GenericSpacecraft Satellite

RenderFlags

Spacecraft GenericSpacecraft

MotorEngine

continues on next page

1.5. Advanced topics 199

Gaia Sky Documentation

Table 2 – continued from previous page
Archetype Parent Components

StarCluster SceneGraphNode

Model
Cluster
SolidAngle
ProperMotion
Label
Focus
Billboard

Billboard ModelBody

TagBillboardSimple
Fade

BillboardGalaxy Billboard

TagBillboardGalaxy

VertsObject SceneGraphNode

Verts

Polyline VertsObject

Arrow
Line

Orbit Polyline

Trajectory
RefSysTransform
AffineTransformations
Label

HeliotropicOrbit Orbit

TagHeliotropic

continues on next page

200 Chapter 1. Contents

Gaia Sky Documentation

Table 2 – continued from previous page
Archetype Parent Components

FadeNode SceneGraphNode

Fade
Label

GenericCatalog FadeNode

DatasetDescription
Highlight
RefSysTransform
AffineTransformations

MeshObject FadeNode

Mesh
Model
DatasetDescription
RefSysTransform
AffineTransformations

BackgroundModel FadeNode

TagBackgroundModel
RefSysTransform
Model
Label
Coordinates
RenderType

SphericalGrid BackgroundModel

GridUV

RecursiveGrid SceneGraphNode

GridRecursive
Fade
RefSysTransform
Model
Label
Line
RenderType

continues on next page

1.5. Advanced topics 201

Gaia Sky Documentation

Table 2 – continued from previous page
Archetype Parent Components

BillboardGroup GenericCatalog

BillboardSet
Coordinates

Text2D SceneGraphNode

Fade
Title
Label

Axes SceneGraphNode

Axis
RefSysTransform
Line

Loc SceneGraphNode

LocationMark
Label

Area SceneGraphNode

Perimeter
Line
TagNoProcessGraph

ParticleGroup GenericCatalog

ParticleSet
TagNoProcessChildren
Focus

StarGroup GenericCatalog

StarSet
Model
Label
Line
Focus
Billboard

continues on next page

202 Chapter 1. Contents

Gaia Sky Documentation

Table 2 – continued from previous page
Archetype Parent Components

Constellation SceneGraphNode

Constel
Line
Label
TagNoProcessGraph

ConstellationBoundaries SceneGraphNode

Boundaries
Line

CosmicRuler SceneGraphNode

Ruler
Line
Label

OrbitalElementsGroup GenericCatalog

OrbitElementsSet
TagNoProcessChildren

Invisible CelestialBody

Raymarching
TagInvisible

OctreeWrapper SceneGraphNode

Fade
DatasetDescription
Highlight
Octree
Octant
TagNoProcessChildren
AffineTransformations

continues on next page

1.5. Advanced topics 203

Gaia Sky Documentation

Table 2 – continued from previous page
Archetype Parent Components

Model SceneGraphNode

Model
Focus
RenderType
Coordinates
SolidAngle
RefSysTransform
AffineTransformations

ShapeObject Model

Shape
Label
Line

KeyframesPathObject VertsObject

Keyframes
Label

VRDeviceModel SceneGraphNode

VRDevice
Model
Line
TagNoClosest

1.5.11 Components

This section lists all components, together with a description and all the attributes. For each attribute, we provide a
description and list its units and possible aliases. We also note the Archetypes that have the component.

A general description of archetypes and components is provided in Data morphology.

All components are: Base, Body, GraphNode, Coordinates, Orientation, Celestial, Magnitude, ProperMotion, Soli-
dAngle, Shape, Trajectory, ModelScaffolding, Model, Atmosphere, Cloud, RenderFlags, MotorEngine, RefSysTrans-
form, AffineTransformations, Fade, DatasetDescription, Label, RenderType, BillboardSet, Title, Axis, LocationMark,
Constel, Boundaries, ParticleSet, StarSet, ParticleExtra, Mesh, Focus, Raymarching.

204 Chapter 1. Contents

Gaia Sky Documentation

Base

Defines basic attributes common to all objects.

This component is in the following archetypes: SceneGraphNode, Universe.

Table 3: Base attributes
Attribute Description Aliases
id The ID of the object, typically set automatically by Gaia

Sky.
name A single object name, used to identify the object and as

a label text, if any. If the object already has names, this
attribute overrides the first one in the name list. The first
name in the list is also used as the i18n key for transla-
tions.

names A list of names, used to identify the object. It overrides
the full name list. The first name in the list is used as a
label text, and as a i18n key.

altName Adds a new name to the name list of this object, at the
end.

altname

opacity Static opacity value. Typically, this gets overwritten in-
ternally in the update process.

componentType The content type string (or list) for this object. Content
types control the visibility of objects. Examples of con-
tent types are ‘Planets’, ‘Asteroids’, ‘Stars’, ‘Labels’, etc.

ct, componentTypes

Body

Defines physical body attributes common to all objects.

This component is in the following archetypes: SceneGraphNode, Universe.

Table 4: Body attributes
Attribute Description Aliases
position The position of the object. This is the position at epoch

if the object has a proper motion, or just a static posi-
tion. Given in the internal reference system and in inter-
nal units by default (see aliases for other units).

pos, positionKm,
posKm, positionPc,
posPc

size The diameter of the entity (in some archetypes this is
the radius). The default attribute uses internal units (see
aliases for other units).

sizeKm, sizePc,
sizepc, sizeM, sizeAU,
diameter, diameterKm,
diameterPc

radius The half-size. See size attribute. radiusKm, radiusPc
color The color of the entity, as a RGBA quartet. Used as the

general color of the entity. The last value in the list, al-
pha, also acts as a transparency value. The color is also
applied to the object label unless ‘labelColor’ is speci-
fied.

labelColor The color of the label of this entity. If set, the label of
this entity uses this color. Otherwise, it uses the global
entity color.

labelcolor

1.5. Advanced topics 205

Gaia Sky Documentation

GraphNode

Defines attributes pertaining to the scene graph hierarchy.

This component is in the following archetypes: SceneGraphNode, Universe.

Table 5: GraphNode attributes
Attribute Description Aliases
parent Name of the parent entity in the scene graph. Positions

for every object are typically relative to the position of
the parent. In some cases, the orientation of the parent
is also contemplated.

Coordinates

Defines attributes that provide coordinates and positions to objects.

This component is in the following archetypes: CelestialBody, BackgroundModel, BillboardGroup, Model.

Table 6: Coordinates attributes
Attribute Description Aliases
coordinatesProvider The coordinates provider object for this object. The

coordinates provider computes the position of the ob-
ject for each time. This is an object containing, at
least, the full reference to a Java class that implements
IBodyCoordinates in the “impl” attribute. Exam-
ples are gaiasky.util.coord.StaticCoordinates
or gaiasky.util.coord.OrbitLintCoordinates.
See Coordinates and ephemerides for more information.

coordinates

Orientation

Defines the orientation model of objects. Can be defined as a rigid rotation (given parameters like rotation period, axial
tilt, etc.) or via quaternion-based orientations.

This component is in the following archetypes: CelestialBody, Satellite.

Table 7: Orientation attributes
Attribute Description Aliases
rotation The rotation object for this object. This attribute de-

scribes a rigid body rotation. This is given in the
form of a map with the attributes angularVelocity,
period, axialtilt, inclination, ascendingNode
and meridianAngle. See Orientation for more infor-
mation.

rigidRotation

orientationProvider Provider class for the quaternion orientations. provider,
attitudeProvider

orientationSource Location of the data file(s), necessary to initialize the
quaternion orientation provider.

attitudeLocation

206 Chapter 1. Contents

Gaia Sky Documentation

Celestial

Defines attributes common to all celestial objects (stars, planets, moons, etc.).

This component is in the following archetypes: CelestialBody.

Table 8: Celestial attributes
Attribute Description Aliases
wikiName The name to look up this object in the wikipedia, if any.

If this is set, a ‘+ info’ button appears in the focus info
interface when this object is the focus, enabling the user
to pull information on the object directly from Gaia Sky
and display it in a window.

wikiname

colorBV The color index B-V of this object. This is only ever used
in single particles/stars, and when no ‘color’ attribute
has been specified. If that is the case, we convert the
B-V index into an RGB color and use it as the object’s
global color.

colorbv, colorBv,
colorIndex

Magnitude

Defines magnitude attributes, both apparent and absolute.

This component is in the following archetypes: CelestialBody.

Table 9: Magnitude attributes
Attribute Description Aliases
appMag The apparent magnitude. If it is not given, it is computed

automatically from the absolute magnitude (if present)
and the distance.

appmag,
apparentMagnitude

absMag The absolute magnitude. If it is not given, it is computed
automatically from the apparent magnitude (if present)
and the distance. In single stars, the absolute magnitude
is used to compute the pseudo-size. See the ‘star render-
ing’ section for more information.

absmag,
absoluteMagnitude

ProperMotion

Defines proper motion attributes.

This component is in the following archetypes: Particle, StarCluster.

Table 10: ProperMotion attributes
Attribute Description Aliases
muAlpha Proper motion in right ascension, the 𝜇𝛼⋆, in mas/yr. muAlphaMasYr
muDelta Proper motion in declination, the 𝜇𝛿 , in mas/yr. muDeltaMasYr
radialVelocity The radial velocity, in km/s. rv, rvKms,

radialVelocityKms
epochJd The epoch as a Julian date. For instance, 2015.5 corre-

sponds to a Julian date of 2457206.125.
epochYear The epoch as a year plus fraction (e.g. 2015.5). This

gets converted to a Julian date internally.

1.5. Advanced topics 207

Gaia Sky Documentation

SolidAngle

Defines solid angle thresholds for the various rendering modes.

This component is in the following archetypes: CelestialBody, StarCluster, Model.

Table 11: SolidAngle attributes
Attribute Description Aliases
thresholdNone Solid angle threshold to start rendering this object at all.

Mainly for internal use. Gets overwritten during initial-
ization.

thresholdPoint Solid angle threshold boundary between rendering the
object as a point and as a quad. Mainly for internal use.
Gets overwritten during initialization.

thresholdQuad Solid angle threshold boundary between rendering the
object as a quad and as a model. Mainly for internal use.
Gets overwritten during initialization.

Shape

Defines attributes related to shape objects

This component is in the following archetypes: ShapeObject.

Table 12: Shape attributes
Attribute Description Aliases
track Shape objects can use the position of other objects as

their own. This is useful when, for example, we want to
add a wireframe sphere around an object. This attribute
contains the name of the object whose position we are to
track.

trackName

Trajectory

Defines attributes related to orbits and trajectory objects. See Orbits for more information.

This component is in the following archetypes: Orbit.

208 Chapter 1. Contents

Gaia Sky Documentation

Table 13: Trajectory attributes
Attribute Description Aliases
orbitProvider In Orbit archetype objects, this is the fully-qualified Java

class that provides orbit data. This class needs to im-
plement IOrbitDataProvider. Values: gaiasky.
data.orbit.OrbitalParametersProvider – orbit
is defined with orbital elements. gaiasky.data.
orbit.OrbitFileDataProvider – orbit defined from
a file of samples. See Orbits for more information.

provider

orbit The orbit component, containing some additional infor-
mation, like the orbital elements, the period, etc. See
Orbits for a full description of the format and possible
values of this attribute.

orientationModel The orientation model of this orbit. Values: default –
the default orientation. extrasolar_system – orien-
tation for extrasolar systems. See Orbits for more infor-
mation.

model

onlyBody In object-less orbits (orbits not attached to any object), it
may be interesting to not render the orbit itself as a line,
but only a point at the head of that orbit in the current
time. If this attribute is set to true, the orbit is rendered
as a single point at the head. Useful essentially to render
many particles using orbital elements. This attribute is
deprecated, use bodyRepresentation instead.

onlybody

bodyRepresentation The body representation type for this orbit/trajectory.
This only works with orbits defined via orbital elements.
Values: only_orbit – the body is not visually repre-
sented at all. only_body – only the body is visually
represented, no line. body_and_orbit – both body and
orbit line are represented.

bodyColor Body color. Color to use to represent the body in orbital
elements trajectories, when the bodyRepresentation
attribute enables the representation of the body for this
trajectory.

pointColor,
pointcolor

pointSize The size of the point at the head of the trajectory in
object-less orbits (orbits that are not attached to any ob-
ject). Examples of this are asteroids, where orbits are
defined via the orbital elements, and not all orbits are at-
tached to an asteroid object for performance purposes.
In these cases, the size of the point at the head of the or-
bit is set in this property.

pointsize

closedLoop Define whether the loop must be closed or not (i.e. join
the end point with the start point). Defaults to true,
which is the value for periodic orbits.

orbitTrail Whether to fade the orbit as it gets further away from the
head (or object), in the opposite direction of travel. By
default, the head is mapped to an opacity of 1, and the
tail is mapped to an opacity of 0.

orbittrail, trail

trailMap Modify the tail mapping value in case orbitTrail is set
to true. This mapping parameter defines the location in
the orbit (in [0,1]) where we map the opacity value of 0.
The default value is 0. Set it to 0.5 to have a trail from
the object to half the orbit. This enables having shorter
trails, while improving the performance due to less lines
being rendered.

trailMinOpacity Minimum opacity level of the whole orbit in trail mode.
Only active if orbitTrail is set to true. This param-
eter defines the minimum opacity of the orbit (in [0,1]).
This enables having trails where the faint end maps to
an opacity larger than zero, thus getting to see the whole
orbit at all times.

newMethod Internal parameter. Changes the way in which transfor-
mations are applied to the orbit objects. Asteroids have
this set to true.

newmethod

numSamples Override the number of samples to be used for this orbit.
Gaia Sky computes the number of samples internally,
but in some cases it may be necessary to override it to
give orbits more detail.

orbitScaleFactor Multiplicative factor to scale the orbit data points when
they are being loaded.

multiplier

fadeDistanceUp Override the distance at which the orbit becomes to-
tally invisible. In internal units. If not overridden, this
is computed internally from the radius of the attached
body.

fadeDistanceDown Override the distance at which the orbit starts to fade
out. In internal units. If not overridden, this is computed
internally from the radius of the attached body.

1.5. Advanced topics 209

Gaia Sky Documentation

ModelScaffolding

Defines attributes related objects with 3D models.

This component is in the following archetypes: ModelBody, Star.

Table 14: ModelScaffolding attributes
Attribute Description Aliases
referencePlane The reference plane to use for this model object. Values:

ecliptic galactic equatorial
refPlane, refplane

randomize A list with the components of this model that need to
be randomized via procedural generation. Can contain
‘model’, ‘atmosphere’, and/or ‘cloud’.

seed In case the ‘randomize’ attribute is defined, this attribute
defines the RNG seed to use.

sizeScaleFactor Scale factor to apply to the 3D model of this object.
Mainly used internally. Using the model or object at-
tributes directly to specify the size is recommended.

sizescalefactor

locVaMultiplier Solid angle multiplier for children location objects (Loc)
of this object. If set, this scales the solid angle of the
object for children locations.

locvamultiplier

locThresholdLabel Threshold label value for children locations. Mainly
used internally, should not be touched externally.

locThOverFactor,
locthoverfactor

shadowValues Override the distance, the camera near and the cam-
era far values of the light camera for this object in the
shadow mapping pass. All are given in units of the ra-
dius of the object.

shadowvalues

Model

Defines the actual model of objects with 3D models. See Model for more information.

This component is in the following archetypes: ModelBody, Star, StarCluster, MeshObject, BackgroundModel, Re-
cursiveGrid, StarGroup, Model, VRDeviceModel.

Table 15: Model attributes
Attribute Description Aliases
model Model definition for this object. See the Model docu-

mentation for more information.

Atmosphere

Defines the atmosphere of a planet or moon. See the Atmospheric scattering parameters documentation for more
information.

This component is in the following archetypes: Planet.

Table 16: Atmosphere attributes
Attribute Description Aliases
atmosphere Atmosphere definition for this object. See the Atmo-

spheric scattering parameters documentation for more
information.

210 Chapter 1. Contents

Gaia Sky Documentation

Cloud

Defines the cloud layer of a planet or moon. See the Clouds documentation for more information.

This component is in the following archetypes: Planet.

Table 17: Cloud attributes
Attribute Description Aliases
cloud Cloud layer definition for this object. See the Clouds

documentation for more information.

RenderFlags

Defines rendering flags.

This component is in the following archetypes: GenericSpacecraft.

Table 18: RenderFlags attributes
Attribute Description Aliases
renderQuad Whether to render this entity as a billboard (quad). renderquad

MotorEngine

Defines machines for the spacecraft mode.

This component is in the following archetypes: Spacecraft.

Table 19: MotorEngine attributes
Attribute Description Aliases
machines Provides machine definitions for the spacecraft mode.

Check out the spacecraft object definition in the default
data pack for more information.

RefSysTransform

Defines an arbitrary reference system transformation via a 4x4 matrix. See Reference system transformations for more
information.

This component is in the following archetypes: Orbit, GenericCatalog, MeshObject, BackgroundModel, RecursiveG-
rid, Axes, Model.

1.5. Advanced topics 211

Gaia Sky Documentation

Table 20: RefSysTransform attributes
Attribute Description Aliases
transformFunction Defines a transformation matrix to apply to the

position of the object. The name of the transforma-
tion to apply. Values: equatorialToEcliptic
eclipticToEquatorial equatorialToGalactic
galacticToEquatorial eclipticToGalactic
galacticToEcliptic See Reference system transfor-
mations for more information.

transformName

transformMatrix The 16 values of the 4x4 transformation matrix, in
column-major order. See Reference system transforma-
tions for more information.

transformValues

AffineTransformations

Defines arbitrary affine transformations, applied in the order they are defined. See Affine transformations for more
information.

This component is in the following archetypes: ModelBody, Orbit, GenericCatalog, MeshObject, OctreeWrapper,
Model.

Table 21: AffineTransformations attributes
Attribute Description Aliases
matrix A generic 4x4 matrix transform that will be applied to

the sequence of affine transformations. The matrix val-
ues need to be in column-major order. See Affine trans-
formations for more information.

transformMatrix

translate A translation vector, in internal units (see aliases for
other units). See Affine transformations for more infor-
mation.

translatePc,
translateKm

rotate A rotation axis and angle, in degrees. The vector is ex-
pected as [X, Y, Z, angle]. See Affine transformations
for more information.

scale A scale transformation. Can be a 3-vector or a single
value. See Affine transformations for more information.

transformations Describe the transformations directly in a map, with
‘impl’, and whatever attributes. The usage of the at-
tributes ‘translate’, ‘scale’ and ‘rotate’ is strongly rec-
ommended over this.

Fade

Defines the properties that control the fading in and out of the object.

This component is in the following archetypes: Billboard, FadeNode, RecursiveGrid, Text2D, OctreeWrapper.

212 Chapter 1. Contents

Gaia Sky Documentation

Table 22: Fade attributes
Attribute Description Aliases
fadeIn The starting and ending fade-in distances, in parsecs,

from the reference system origin (unless ‘fadeObject-
Name’ or ‘fadePosition’ are defined, in which case the
distances are relative to the given object or position),
where the object starts and ends its fade-in transition.

fadein

fadeInMap The alpha/opacity values to which the fade-in starting
and ending distances are mapped. They default to [0,1].

fadeOut The starting and ending fade-out distances, in parsecs,
from the reference system origin (unless ‘fadeObject-
Name’ or ‘fadePosition’ are defined, in which case the
distances are relative to the given object or position),
where the object starts and ends its fade-out transition.

fadeout

fadeOutMap The alpha/opacity values to which the fade-out starting
and ending distances are mapped. They default to [1,0].

fadeObjectName The name of the object to be used to compute the current
distance for the fade in and out operations.

positionobjectname

fadePosition The position, in the internal reference system and inter-
nal units, to be used to compute the current distance for
the fade in and out operations.

DatasetDescription

Contains metadata about the dataset represented by this object. All objects with this component get an entry in the
datasets list.

This component is in the following archetypes: GenericCatalog, MeshObject, OctreeWrapper.

Table 23: DatasetDescription attributes
Attribute Description Aliases
catalogInfo A map containing the metadata for the catalog rep-

resented by this object. The map can contain
the attributes ‘name’, ‘description’, ‘type’ (INTER-
NAL|SCRIPT|LOD|SAMP|UI), ‘nParticles’, ‘sizebytes’.
See Catalog formats for more information.

datasetInfo,
cataloginfo

addDataset Whether to add the dataset to the dataset manager or not.
Typically used with star and particle sets that already be-
long to a higher-level dataset.

addToDatasetManager

Label

Defines attributes that control how labels are processed and rendered. See Labels for more information.

This component is in the following archetypes: CelestialBody, StarCluster, Orbit, FadeNode, BackgroundModel, Re-
cursiveGrid, Text2D, Loc, StarGroup, Constellation, CosmicRuler, ShapeObject, KeyframesPathObject.

1.5. Advanced topics 213

Gaia Sky Documentation

Table 24: Label attributes
Attribute Description Aliases
label A boolean to disable or enable label rendering for this

object.
label2d Unused, here for backwards compatibility.
labelPosition Override the position at which to render this label, in the

internal reference system and internal units (see aliases
for more unit options). If this is not given, the position
of the object is used.

labelposition,
labelPositionPc,
labelPositionKm

forceLabel Force-display the label of this object, regardless of its
solid angle. If ‘true’, the label for this object is always
displayed.

labelFactor Factor to apply to the size of the label for this object.
labelBias Bias to compute the label visibility. >1 to increase visi-

bility.
labelMax Internal rendering factor, should not be set externally.
textScale Internal rendering factor, should not be set externally.

RenderType

Defines attributes that control rendering operations for this object.

This component is in the following archetypes: ModelBody, Particle, BackgroundModel, RecursiveGrid, Model.

Table 25: RenderType attributes
Attribute Description Aliases
renderGroup This is an internal property used to fine-tune exactly the

environment and shader to use to render the object. See
RenderGroup.java for more information.

rendergroup

BillboardSet

Defines attributes related to billboard set objects.

This component is in the following archetypes: BillboardGroup.

Table 26: BillboardSet attributes
Attribute Description Aliases
data A list of BillboardDataset objects. Mainly used for

the Milky Way model. Each object contains ‘impl’, ‘file’,
‘type’, ‘size’, ‘intensity’, ‘layers’, and ‘maxsizes’. See
the Milky Way object in the universe.json file in the
default data pack for an example.

214 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/render/RenderGroup.java

Gaia Sky Documentation

Title

Defines attributes related to two-dimensional titles.

This component is in the following archetypes: Text2D.

Table 27: Title attributes
Attribute Description Aliases
scale Scale factor to scale up or down the title.
lines Whether to render frame lines above and below the title

or not.
align The horizontal alignment of the title. Center (1), left (8)

or right (16).

Axis

Defines attributes related to reference system axes.

This component is in the following archetypes: Axes.

Table 28: Axis attributes
Attribute Description Aliases
axesColors A 3x3 matrix with the color for each of the axes in the

reference system.

LocationMark

Defines attributes related to locations and location mark objects.

This component is in the following archetypes: Loc.

Table 29: LocationMark attributes
Attribute Description Aliases
location A 2-dimensional position [longitude, latitude] on the

surface of the parent, in degrees.
distFactor The distance from the center of the object, in case of

non-spherical parent objects. This is essentially the ra-
dius, as the locations are given in [longitude, latitude,
radius]. Typically the radius is that of the object, but
this parameter overrides it.

Constel

Defines attributes related to constellation objects.

This component is in the following archetypes: Constellation.

1.5. Advanced topics 215

Gaia Sky Documentation

Table 30: Constel attributes
Attribute Description Aliases
ids Contains a list of segments (a list of lists of points) with

the HIP identifiers for each of the stars of this constella-
tion.

Boundaries

Defines attributes related to constellation boundary objects.

This component is in the following archetypes: ConstellationBoundaries.

Table 31: Boundaries attributes
Attribute Description Aliases
boundaries Contains a list of lists of sky coordinates (𝛼, 𝛿), in de-

grees, defining the lines of the constellation boundaries.
boundariesEquatorial

ParticleSet

Defines attributes related to particle set objects, which contain a point cloud.

This component is in the following archetypes: ParticleGroup.

216 Chapter 1. Contents

Gaia Sky Documentation

Table 32: ParticleSet attributes
Attribute Description Aliases
provider The class to be used to load the data. This class must

implement IParticleGroupDataProvider. This
should have the fully-qualified class name. For instance,
gaiasky.data.group.STILDataProvider.

providerParams Parameters to be passed into the provider class. providerparams
meanPosition The mean position of this particle set, in the internal ref-

erence system and internal units (see aliases for more
units). If not given, this is computed automatically from
the particle positions.

meanPositionKm,
meanPositionPc, pos,
posKm, posPc, position

dataFile The path to the data file with the particles to be loaded
by the provider.

datafile

factor A multiplicative factor to apply to the positions of all
particles during loading.

numLabels Number of labels to render for this particle group. De-
faults to the configuration setting.

profileDecay The profile decay of the particles in the shader. Controls
how sudden is the color and intensity falloff from the
center.

profiledecay

colorNoise Noise factor for the color, in [0,1]. This randomly gen-
erates colors from the main color. The larger the color
noise, the more different the generated colors from the
main color.

colornoise

particleSizeLimits Minimum and maximum solid angle limits of the
particles in radians. They are used as (𝑑𝑖𝑠𝑡 *
𝑡𝑎𝑛(𝛼𝑚𝑖𝑛), 𝑑𝑖𝑠𝑡*𝑡𝑎𝑛(𝛼𝑚𝑎𝑥)). The minimum and max-
imum values must be in [0,1.57].

particlesizelimits,
particleSizeLimitsDeg

colorMin The color of the particles at the closest distance, as
RGBA. If this is set, the color of the particles gets in-
terpolated from colorMin to colorMax depending on
the distance of the particles to the origin.

colorMax The color of the particles at the maximum distance, as
RGBA. If this is set, the color of the particles gets inter-
polated from colorMin to colorMax depending on the
distance of the particles to the origin.

colorFromTexture If true, color of this particle depends on the texture as-
signed to it. This is useful when using ‘textureAttribute’,
for instance, where the texture is assigned depending on
the value of an attribute for this object. This feature re-
quires a non-zero ‘colorNoise’, as it is used to generate
the colors.

fixedAngularSize Set a fixed angular size for all particles in this set, as a
solid angle in radians (see aliases for other units).

fixedAngularSizeDeg,
fixedAngularSizeRad

renderSetLabel Enable or disable the global label of this particle set. If
true, the name of this particle set is rendered at the given
label position.

renderParticles Disable particle rendering by setting this to false. La-
bels, in case of star sets, will still be rendered.

texture Texture file to render the particles of this group. This can
also point to a directory, in which case all the image files
within are used (they must have the same dimensions).
If this is provided, profileDecay is ignored.

textures List of texture files to render the particles of this group.
If more than one texture is provided, each particle is as-
signed a texture randomly. This can also point to one or
more directories, in which case all the image files within
are used. All images must have the same dimensions. If
this is provided, profileDecay is ignored.

textureAttribute If present, this attribute is used to assign textures to par-
ticles. It should be an integer attribute in [1,n], where
n is the number of textures. If the value of the attribute
is out of this range, it is clamped. The attribute value
is used as an index to query the texture array, where the
textures are sorted using the natural order of their file
names. If the attribute is of any other type, Gaia Sky
will do its best to use it to assign textures as well, but no
guarantees.

modelFile Path to the model file to use (obj, obj.gz g3db,
g3dj, gltf, glb). If present, the modelType and
modelParams attributes are ignored. The model should
have only positions (vector-3), normals (vector-3), and
texture coordinates (vector-2) as vertex attributes. Only
the first mesh of the model is used. Textures, lighting
and material are ignored. This is only used in extended
particle groups.

modelType The model type to use for this particle set. Values:
quad – render billboards. sphere render UV spheres.
icosphere render icosahedron-based spheres. Defaults
to ‘quad’. This is only used in extended particle groups.
To enable extended particle groups, you need to set
‘type’ to ‘PARTICLES_EXT’ in the ‘providerParams’
map.

modelParams Model parameters in a map. Usually, the ‘diameter’,
‘width’, ‘height’, ‘recursion’ or ‘quality’ go here. For
more info, see the gaiasky.util.ModeCache class.
This is only used in extended particle groups.

modelPrimitive The GL primitive to use. Values: GL_TRIANGLES
GL_TRIANGLE_STRIP GL_TRIANGLE_FAN GL_LINES
GL_LINE_STRIP GL_LINE_LOOP Defaults to
GL_TRIANGLES. The GL_LINE primitives enable
wireframe rendering, which is currently only supported
by sphere and ico-sphere model types. This is only used
in extended particle groups.

1.5. Advanced topics 217

Gaia Sky Documentation

StarSet

Defines attributes related to star set objects, which contain a star catalog or group.

This component is in the following archetypes: StarGroup.

Table 33: StarSet attributes
Attribute Description Aliases
provider The class to be used to load the data. This class must

implement IParticleGroupDataProvider. This
should have the fully-qualified class name. For instance,
gaiasky.data.group.STILDataProvider.

providerParams Parameters to be passed into the provider class. providerparams
meanPosition The mean position of this particle set, in the internal ref-

erence system and internal units (see aliases for more
units). If not given, this is computed automatically from
the particle positions.

meanPositionKm,
meanPositionPc, pos,
posKm, posPc, position

dataFile The path to the data file with the particles to be loaded
by the provider.

datafile

factor A multiplicative factor to apply to the positions of all
particles during loading.

profileDecay The profile decay of the particles in the shader. Controls
how sudden is the color and intensity falloff from the
center.

profiledecay

colorNoise Noise factor for the color, in [0,1]. This randomly gen-
erates colors from the main color. The larger the color
noise, the more different the generated colors from the
main color.

colornoise

particleSizeLimits Minimum and maximum solid angle limits of the
particles in radians. They are used as (𝑑𝑖𝑠𝑡 *
𝑡𝑎𝑛(𝛼𝑚𝑖𝑛), 𝑑𝑖𝑠𝑡*𝑡𝑎𝑛(𝛼𝑚𝑎𝑥)). The minimum and max-
imum values must be in [0,1.57].

particlesizelimits,
particleSizeLimitsDeg

colorMin The color of the particles at the closest distance, as
RGBA. If this is set, the color of the particles gets in-
terpolated from colorMin to colorMax depending on
the distance of the particles to the origin.

colorMax The color of the particles at the maximum distance, as
RGBA. If this is set, the color of the particles gets inter-
polated from colorMin to colorMax depending on the
distance of the particles to the origin.

fixedAngularSize Set a fixed angular size for all particles in this set, as a
solid angle in radians (see aliases for other units).

fixedAngularSizeDeg,
fixedAngularSizeRad

renderParticles Disable particle rendering by setting this to false. La-
bels, in case of star sets, will still be rendered.

epochJd The epoch for the positions of this star group as a Julian
date.

epoch

variabilityEpochJd The light curve epoch for the variable stars in this star
group as a Julian date.

variabilityEpoch

numLabels Number of labels to render for this star group. Defaults
to the configuration setting.

218 Chapter 1. Contents

Gaia Sky Documentation

ParticleExtra

Defines attributes related to single particles and single star objects.

This component is in the following archetypes: Particle.

Table 34: ParticleExtra attributes
Attribute Description Aliases
primitiveRenderScale Artificial scale factor for the size of this particle during

rendering.
tEff Effective temperature of the star or body, in Kelvin. teff

Mesh

Defines attributes related to meshes and iso-density surfaces. See Mesh objects for more information.

This component is in the following archetypes: MeshObject.

Table 35: Mesh attributes
Attribute Description Aliases
shading Shading mode for the mesh. Values: additive –

additive blending. dust – opaque mesh with dither
transparency at the edges. regular – regular general-
purpose PBR shader.

additiveBlending Sets the shading mode to ‘additive’. additiveblending

Focus

Defines attributes related to objects that can be focussed.

This component is in the following archetypes: CelestialBody, StarCluster, ParticleGroup, StarGroup, Model.

Table 36: Focus attributes
Attribute Description Aliases
focusable Defines whether the object is focusable or not. By de-

fault, this is on.

Raymarching

Defines attributes related to ray-marched objects.

This component is in the following archetypes: Invisible.

1.5. Advanced topics 219

Gaia Sky Documentation

Table 37: Raymarching attributes
Attribute Description Aliases
shader Path to the fragment shader GLSL file to use to ren-

der this object. The fragment shader is processed for
each pixel in the image, and must produce a ray-marched
representation of the object. The file must have one of
the following extensions: .glsl, .frag, .fragment,
.glslf, .fsh. The fragment shader file is typically
distributed with the dataset, and has the form $data/
[dataset-name]/path/to/file.glsl.

raymarchingShader

additionalTexture Texture file to pass to the raymarching shader as addi-
tional texture. This is usually a noise texture, but can be
anything, really.

raymarchingTexture

1.5.12 Star rendering

This section provides a bird’s eye view of the star rendering process implemented in Gaia Sky, with pointers to source
files implementing the different aspects of it.

The star rendering process in Gaia Sky consists of two parts. First, we compute a pseudo-size for each star, and then
we use all the pseudo-sizes in the star shaders to render the stars.

Pseudo-size determination

We determine the pseudo-size from each star based on the star’s apparent magnitude. First, we get the apparent mag-
nitude as seen from the Sun from whatever star catalog. Then, we correct it using extinction data (if available, see the
magnitude/color corrections section).

The Java code that implements this (STILDataProvider class, used to load external catalogs in CSV or VOTable into
Gaia Sky) does not include magnitude/color corrections, the Rust code in the catalog generator program does:

• Magnitude corrections - load.rs#L799.

Once we have the corrected apparent magnitude, we convert it to an absolute magnitude with the common formula

𝑀 = 𝑚− 5(𝑙𝑜𝑔10𝑑𝑝𝑐 − 1),

where 𝑀 is the absolute magnitude and 𝑚 is the apparent one. Finally, we do a conversion from absolute magnitude
to pseudo-size using the luminosity,

𝐿 = 𝐿0 * 10−0.4*𝑀𝑜 ,

where 𝑀𝑜 is the bolometric magnitude. Obviously, this is not physically accurate, as the bolometric magnitude should
include the contributions of the radiation at all wavelengths, but we found it works quite well in practice for rendering
stars. Then we apply a constant factor and a square root, but this is tailored to Gaia Sky’s rendering and should probably
be adapted to your own renderer. The routine we use is here:

• Magnitude to pseudo-size routine - load.rs#L826.

Or in Java, look at method absoluteMagnitudeToPseudoSize(double) of STILDataProvider here.

220 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky-catgen/src/branch/master/src/load.rs#L799
https://codeberg.org/gaiasky/gaiasky-catgen/src/branch/master/src/load.rs#L826
https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/data/group/STILDataProvider.java#L716

Gaia Sky Documentation

Star shader and rendering

That is only half of the picture though. That gets us the pseudo-size from the apparent magnitude.

On the rendering side, Gaia Sky has the option of rendering stars using billboards (quads implemented as two triangles
sharing two vertices) or using native driver points (GL_POINTS). The code using GL_POINTS is faster but has some
important drawbacks like points being drawn in screen space, which ignores effects like perspective distortion, so we
focus here on the billboard quads.

We pass the pseudo-size 𝑝 into the shader and compute the solid angle 𝛼 from this size and the current distance 𝑑 from
the camera to the star:

𝛼 = atan(𝑝/𝑑)

Since we are dealing with distant stars most of the time, we can probably get away with using the small-angle formula
(i.e. omit atan). We found it does not have much of an impact on performance on relatively modern GPUs, and it
gives us accurate angles when stars get closer. Then, we use the solid angle, together with the pseudo-size and some
additional parameters (like the brightness power, which applies a power function to the solid angle to artificially widen
the difference between bright and faint stars) to work out the quad size. This is implemented in various shaders. For
example, have a look at:

• Star shader code - star.group.quad.vertex.glsl#L83

The whole star rendering process involves many parameters (i.e. see the visual settings section) and is quite complex,
but with the topics discussed in this section you should have a solid understanding of what is going on behind the
scenes.

1.5.13 Defining an extrasolar system

In this little example we will define a made-up extrasolar system with two stars orbiting the common barycenter and
four planets doing the same. We call the stars Exonia A and Exonia B, and the planets Exonia c, d, e and f. Additionally,
we’ll give Exonia c a small moon called Exonia c1. The system we’ll create in this short tutorial can be downloaded
directly from the download manager in Gaia Sky (with Gaia Sky 3.2.0+) or manually here.

Contents

• Defining an extrasolar system

– Initial set up

– Defining the objects

∗ Stars

∗ Planets

Initial set up

First, we need to create the JSON file where we define the objects. Go to the $data directory (see System Directories)
and create the directory and file system-exonia/dataset.json:

cd $data
mkdir system-exonia && cd system-exonia
echo "{'objects':[]}" > dataset.json

1.5. Advanced topics 221

https://en.wikipedia.org/wiki/Small-angle_approximation
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/shader/star.group.quad.vertex.glsl#L83
https://gaia.ari.uni-heidelberg.de/gaiasky/repository/systems/exonia/

Gaia Sky Documentation

We have created a file with no objects. Since we have added the dataset.json file, Gaia Sky will recognize the
dataset (now it is still empty, but we’ll get to that), and you’ll be able to select it in the dataset manager at startup.

The dataset descriptor file contains some metadata about the new catalog. Let’s have a look:

{
"key" : "system-exonia",
"name" : "Exonia extrasolar system",
"type" : "system",
"version" : 2,
"description" : "A made-up, partially procedurally

generated extra-solar system with
two stars, three planets and a moon.",

"size" : 2600000,
"nobjects" : 7,
"data" : [

{
"loader": "gaiasky.data.JsonLoader",
"files": ["$data/system-exonia/system-exonia.json"]

}
]

}

As we can see, it has the catalog name, its version, its type, the description, the size, the number of objects and a pointer
to the actual data file. All JSON files in Gaia Sky are loaded with the JsonLoader class, so that part is more or less
constant.

Defining the objects

Now we are ready to start adding our objects. First, since all the objects orbit the barycenter of the system, we need an
object to represent its position. This object must not be visible, but it must allow us to represent a position in space,
and it must be the parent of all other objects in the system. We can do that with an object of the archetype Invisible.

{
"objects" : [

{
"names" : ["Exonia Center"],
"componentType" : ["Others"],
"size" : 6.0e4,

"parent" : "Universe",
"archetype" : "Invisible",

"coordinates" : {
"impl" : "gaiasky.util.coord.StaticCoordinates",
"positionPc" : [20.0, 90.0, 10.0]

}
}

]
}

This object has the name Exonia Center. We will use this name in the "parent" attribute when we crate the rest of
the objects. Since the barycenter of this system will not move, we use StaticCoordinates. Here he have used the

222 Chapter 1. Contents

Gaia Sky Documentation

property "positionPc", so we need to enter the position in parsecs in the internal reference system. We could have
used "positionKm" to use kilometers, or simply "position" to use internal units.

The internal reference system is based on the equatorial system, so we need equatorial Carteisan coordinates. However,
we can also use ecliptic or galactic cartesian coordinates by specifying a transformation:

{
"coordinates" : {
"impl" : "gaiasky.util.coord.StaticCoordinates",
"positionPc" : [20.0, 90.0, 10.0],
"transformName" : "galacticToEquatorial"

}
}

Here, the properties "transformName" and "transformFunction" can be used interchangeably to specify the trans-
formation.

Finally, we also accept spherical equatorial, galactic and ecliptic coordinates. They are set using
"positionEquatorial" (alpha, delta, distance), "positionEcliptic" (l, b, distance) and "positionGalactic"
(gal_lon, gal_lat, distance). The angles are in degrees and the distances are in parsecs. If you choose to use spherical
coordinates, please do not specify a transformation!

Stars

Catalog stars in Gaia Sky are not single objects, so we can’t just use them. If we need a star to do fancy things (e.g.,
move around in an orbit, have children exoplanets, etc.), we need to define a model object using the archetype Star. In
our case, for each star we need an orbit object (as we want the star to move in an elliptical orbit) and a star object. The
orbit is in charge of constructing the trajectory data and rendering it, while the star is the model object representing the
star itself. We have two stars in the system, Exonia A and Exonia B. More information on the orbit format can be found
here. Let’s see how we define them and then we go over the attributes:

{
"name" : "Exonia A orbit",
"color" : [1.0, 0.0, 1.0, 0.8],
"componentType": ["Orbits", "Stars"],

"parent" : "Exonia Center",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"transformFunction" : "galacticToEquatorial",
"newmethod": true,
"orbit" : {

"period" : 130.7655287755297,
"epoch" : 2455198.0,
"semimajoraxis" : 77112085.246326,
"eccentricity" : 0.28862,
"inclination" : 7.134,
"ascendingnode" : 3.91,
"argofpericenter" : 0.84,
"meananomaly" : 307.80

}
},
{

(continues on next page)

1.5. Advanced topics 223

Gaia Sky Documentation

(continued from previous page)

"names" : ["Exonia A"],
"color" : [1.0, 0.9213, 0.8818, 1.0],
"colorbv" : 0.656,
"componentType" : "Stars",

"absmag" : 2.85,
"appmag" : 8.73,

"parent" : "Exonia Center",
"archetype" : "Star",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitname" : "Exonia A orbit"

}
},
{

"name" : "Exonia B orbit",
"color" : [0.0, 1.0, 1.0, 0.8],
"componentType": ["Orbits", "Stars"],

"parent" : "Exonia Center",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"transformFunction" : "galacticToEquatorial",
"newmethod" : true,
"orbit" : {

"period" : 120.7655287755297,
"epoch" : 2455198.0,
"semimajoraxis" : 71112085.246326,
"eccentricity" : 0.4,
"inclination" : 0.93415027853740,
"ascendingnode" : 130.74959784132,
"argofpericenter" : 140.31984971,
"meananomaly" : 0.40983227102735

}
},
{

"names" : ["Exonia B"],
"color" : [0.9, 0.8213, 0.7818, 1.0],
"colorbv" : 0.656,
"componentType" : "Stars",

"absmag" : 4.85,
"appmag" : 10.73,

"parent" : "Exonia Center",
"archetype" : "Star",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",

(continues on next page)

224 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

"orbitname" : "Exonia B orbit"
}

}

Note that we have two orbits and two stars. Orbits are objects of archetype Orbit. Each orbit is essentially a vessel
for the orbital elements (period, semi-major axis, eccentricity, etc.). More information on the format and units can
be found here. Since our Internal reference system is an equatorial system, we add the "galacticToEquatorial"
transformation so that our reference plane is actually the galactic plane instead of Earth’s equatorial plane.

Single stars are objects of archetype Star. Note that the parent of all objects is the invisible object Exonia Center.
Additionally, the coordinates of the stars are provided by the respective orbit objects in the “coordinates” key. The rest
is adding the star parameters like color, magnitudes, etc.

Colors can be specified in RGB or using the B-V color index. If both are specified, RGB takes precedence. In case
Gaia Sky only finds the B-V color index, it translates it to RGB using this procedure.

Star absolute magnitudes and sizes, "absmag" and "size", are intertwined. If only the absolute magnitude is specified,
it is converted to a radius. The conversion is callibrated with the Sun, so that an absolute magnitude of ~4.85 produces
roughly the radius of the Sun, ~3.5e4 km. Otherwise, the size can be specified directly. Since single stars and star
catalogs use different render paths, the relatve brightness of single stars with respect to stars in catalogs may not be
entirely accurate.

Planets

Now, let’s have a look at the planets. They are very similar to the stars in that they also need orbit objects. They differ
in the object type and attributes tough. Exonia e uses JPG images as textures, so at this point you should get the Exonia
data pack, which contains these textures. The rest of the objects use procedurally generated data.

Here is the definition of the planets:

{
"name" : "Exonia c orbit",
"color" : [0.3, 0.2, 0.9, 0.7],
"componentType": ["Orbits", "Planets"],

"parent" : "Exonia Center",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"transformFunction" : "galacticToEquatorial",
"newmethod": true,
"orbit" : {

"period" : 1325.85,
"epoch" : 2455400.5,
"semimajoraxis" : 353350171.0,
"eccentricity" : 0.08862,
"inclination" : 7.134,
"ascendingnode" : 103.91,
"argofpericenter" : 149.84,
"meananomaly" : 307.80

}
},
{

(continues on next page)

1.5. Advanced topics 225

https://en.wikipedia.org/wiki/Orbital_elements
http://stackoverflow.com/questions/21977786/star-b-v-color-index-to-apparent-rgb-color
https://gaia.ari.uni-heidelberg.de/gaiasky/repository/systems/exonia/

Gaia Sky Documentation

(continued from previous page)

"name" : "Exonia c",
"color" : [0.5, 0.6, 1.0, 1.0],
"size" : 2410.3,
"componentType" : "Planets",

"absmag" : 0.5,

"parent" : "Exonia Center",
"archetype" : "Planet",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitname" : "Exonia c orbit"

},

"rotation" : {
"period" : 400.536,
"axialtilt" : 0.0,
"inclination" : 0.281,
"meridianangle" : 200.39

},
"model" : {

"args" : [true],
"type" : "sphere",
"params" : {

"quality" : 400,
"diameter" : 1.0,
"flip" : false

},
"material" : {

"height" : "generate",
"diffuse" : "generate",
"normal" : "generate",
"specular" : "generate",
"biomelut" : "data/tex/base/biome-smooth-lut.png",
"biomehueshift" : 80.0,
"noise" : {

"seed" : 5229243,
"scale" : 0.2,
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 4.34,
"octaves" : 10,
"range" : [-1.8, 1.0],
"power" : 4.0

},
"heightScale" : 3.0

}
},
"cloud" : {

"size" : 2430.0,
"cloud" : "generate",

(continues on next page)

226 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

"noise" : {
"seed" : 1234,
"scale" : [1.0, 1.0, 0.4],
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 4.34,
"octaves" : 6,
"range" : [-1.5, 0.4],
"power" : 10.0

},

"params" : {
"quality" : 200,
"diameter" : 2.0,
"flip" : false

}
},
"atmosphere" : {

"size" : 2580.0,
"wavelengths" : [0.7, 0.8, 0.9],
"m_Kr" : 0.0025,
"m_Km" : 0.0015,
"m_eSun" : 1.0,
"fogdensity" : 2.5,
"fogcolor" : [1.0, 0.7, 0.6],

"params" : {
"quality" : 600,
"diameter" : 2.0,
"flip" : true

}
}

},
{

"name" : "Exonia c1 orbit",
"color" : [0.8, 0.4, 0.4, 0.7],
"componentType": ["Orbits", "Moons"],

"parent" : "Exonia c",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"newmethod": true,
"orbit" : {

"mu" : 4.2e13,
"period" : 1.2624407,
"epoch" : 2455198.0,
"semimajoraxis" : 23463.2,
"eccentricity" : 0.00033,
"inclination" : 1.791,
"ascendingnode" : 0.370,
"argofpericenter" : 0.233,

(continues on next page)

1.5. Advanced topics 227

Gaia Sky Documentation

(continued from previous page)

"meananomaly" : 0.554
}

},
{

"name" : "Exonia c1",
"color" : [0.5, 0.6, 1.0, 1.0],
"size" : 410.3,
"componentType" : "Moons",

"absmag" : 0.5,

"parent" : "Exonia c",
"archetype" : "Planet",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitname" : "Exonia c1 orbit"

},

"rotation" : {
"period" : 40.536,
"axialtilt" : 0.0,
"inclination" : 0.281,
"meridianangle" : 200.39

},
"model" : {

"args" : [true],
"type" : "sphere",
"params" : {

"quality" : 400,
"diameter" : 1.0,
"flip" : false

},
"material" : {

"height" : "generate",
"diffuse" : "generate",
"normal" : "generate",
"specular" : "generate",
"biomelut" : "data/tex/base/rock-smooth-lut.png",
"biomehueshift" : 289.0,
"noise" : {

"seed" : 963249243,
"scale" : 0.12,
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 3.0,
"octaves" : 8,
"range" : [0.0, 1.0],
"power" : 1.0

},
"heightScale" : 20.0

}

(continues on next page)

228 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

}
},
{

"name" : "Exonia d orbit",
"color" : [1.0, 0.7, 0.5, 0.7],
"componentType": ["Orbits", "Planets"],

"parent" : "Exonia Center",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"transformFunction" : "galacticToEquatorial",
"newmethod" : true,
"orbit" : {

"period" : 3851.7655287755297,
"epoch" : 2455198.0,
"semimajoraxis" : 719622085.246326,
"eccentricity" : 0.1,
"inclination" : 0.93415027853740,
"ascendingnode" : 130.74959784132,
"argofpericenter" : 180.31984971,
"meananomaly" : 0.40983227102735

}

},
{

"name" : "Exonia d",
"color" : [0.71, 0.32, 0.08, 1.0],
"size" : 7439.7,
"componentType" : "Planets",

"absmag" : -2.67,
"appmag" : 5.73,

"parent" : "Exonia Center",
"archetype" : "Planet",
"refplane" : "equatorial",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitname" : "Exonia d orbit"

},

"rotation" : {
"period" : 1407.509405,
"axialtilt" : 2.1833,
"inclination" : 7.005,
"meridianangle" : 329.548

},

"model" : {
"args" : [true],

(continues on next page)

1.5. Advanced topics 229

Gaia Sky Documentation

(continued from previous page)

"type" : "sphere",
"params" : {

"quality" : 400,
"diameter" : 1.0,
"flip" : false

},
"material" : {

"height" : "generate",
"diffuse" : "generate",
"normal" : "generate",
"specular" : "generate",
"biomelut" : "data/tex/base/biome-smooth-lut.png",
"biomehueshift" : -15.0,
"noise" : {

"seed" : 993390,
"scale" : 0.1,
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 5.34,
"octaves" : 10,
"range" : [-1.4, 1.0],
"power" : 7.5

},
"heightScale" : 14.0

}
},
"cloud" : {

"size" : 7475.0,
"cloud" : "generate",
"noise" : {

"seed" : 1983,
"scale": [1.8, 1.8, 1.0],
"type" : "simplex",
"fractaltype" : "ridgemulti",
"frequency" : 2.34,
"octaves" : 4,
"range" : [-1.5, 0.8],
"power" : 7.0

},

"params" : {
"quality" : 200,
"diameter" : 2.0,
"flip" : false

}
},
"atmosphere" : {

"size" : 7730.0,
"wavelengths" : [0.6, 0.56, 0.475],
"m_Kr" : 0.0025,
"m_Km" : 0.0015,
"m_eSun" : 3.0,

(continues on next page)

230 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

"fogdensity" : 4.5,
"fogcolor" : [0.8, 0.9, 1.0],

"params" : {
"quality" : 600,
"diameter" : 2.0,
"flip" : true

}
}

},
{

"name" : "Exonia e orbit",
"color" : [0.2, 1.0, 0.5, 0.7],
"componentType": ["Orbits", "Planets"],

"parent" : "Exonia Center",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"transformFunction" : "galacticToEquatorial",
"newmethod": true,
"orbit" : {

"period" : 9905.85,
"epoch" : 2455400.5,
"semimajoraxis" : 1353350171.0,
"eccentricity" : 0.08862,
"inclination" : 9.134,
"ascendingnode" : 83.91,
"argofpericenter" : 149.84,
"meananomaly" : 209.80

}
},
{

"name" : "Exonia e",
"color" : [0.71, 0.32, 0.08, 1.0],
"size" : 3389.7,
"componentType" : "Planets",

"absmag" : -2.67,
"appmag" : 5.73,

"parent" : "Exonia Center",
"archetype" : "Planet",
"refplane" : "equatorial",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitname" : "Exonia e orbit"

},

"rotation" : {
"period" : 1407.509405,

(continues on next page)

1.5. Advanced topics 231

Gaia Sky Documentation

(continued from previous page)

"axialtilt" : 2.1833,
"inclination" : 7.005,
"meridianangle" : 329.548

},

"model" : {
"args" : [true],
"type" : "sphere",
"params" : {

"quality" : 400,
"diameter" : 1.0,
"flip" : false

},
"material" : {

"diffuse" : "data/tex/base/exoniae-diffuse.jpg",
"emissive" : "data/tex/base/exoniae-emissive.jpg",
"normal" : "data/tex/base/exoniae-normal.jpg",
"metallic" : "data/tex/base/exoniae-metallic.jpg",
"height" : "data/tex/base/exoniae-height.jpg",
"heightScale" : 25.9848

}
},
"atmosphere" : {

"size" : 3500.0,
"wavelengths" : [0.55, 0.5, 0.45],
"m_Kr" : 0.0025,
"m_Km" : 0.0015,
"m_eSun" : 3.0,
"fogdensity" : 4.5,
"fogcolor" : [0.8, 0.9, 1.0],

"params" : {
"quality" : 600,
"diameter" : 2.0,
"flip" : true

}
}

},
{

"name" : "Exonia f orbit",
"color" : [1.0, 1.0, 0.4, 0.7],
"componentType": ["Orbits", "Planets"],

"parent" : "Exonia Center",
"archetype" : "Orbit",
"provider" : "gaiasky.data.orbit.OrbitalParametersProvider",

"transformFunction" : "galacticToEquatorial",
"newmethod": true,
"orbit" : {

"period" : 11095.85,
"epoch" : 2455400.5,

(continues on next page)

232 Chapter 1. Contents

Gaia Sky Documentation

(continued from previous page)

"semimajoraxis" : 1453350171.0,
"eccentricity" : 0.08862,
"inclination" : 9.134,
"ascendingnode" : 83.91,
"argofpericenter" : 149.84,
"meananomaly" : 209.80

}
},
{

"name" : "Exonia f",
"color" : [0.71, 0.72, 0.78, 1.0],
"size" : 3389.7,
"componentType" : "Planets",

"absmag" : -2.67,
"appmag" : 5.73,

"parent" : "Exonia Center",
"archetype" : "Planet",
"refplane" : "equatorial",

"coordinates" : {
"impl" : "gaiasky.util.coord.OrbitLintCoordinates",
"orbitname" : "Exonia f orbit"

},

"rotation" : {
"period" : 1407.509405,
"axialtilt" : 2.1833,
"inclination" : 7.005,
"meridianangle" : 329.548

},
"seed" : [9858457687, 11448],
"randomize" : ["model", "atmosphere"],
"cloud" : {

"size" : 3400.0,
"cloud" : "generate",
"noise" : {

"seed" : 1234,
"scale": [0.05, 0.05, 0.4],
"type" : "gradval",
"fractaltype" : "decarpenterswiss",
"frequency" : 5.34,
"octaves" : 9,
"range" : [-0.1, 1.0],
"power" : 2.0

},

"params" : {
"quality" : 200,
"diameter" : 2.0,
"flip" : false

(continues on next page)

1.5. Advanced topics 233

Gaia Sky Documentation

(continued from previous page)

}
}

}

The orbits are essentially the same as in the case of stars. The objects are now using the archetype Planet, and they
define a rotation and a model. The rotation specifies the parameters of the orientation and rotation of the planet like the
period, the axial tilt and the inclination. The model defines the 3D model object properties. In this case we use spheres.
Within the model is the material, which defines the textures to use for each of the material attributes and optionally
the procedural generation parameters. We also have clouds and atmospheres, but these are covered in the procedural
generation section.

Here is a short clip of the system once loaded into Gaia Sky:

1.5.14 Cubemaps

Gaia Sky supports cubemaps, in addition to regular equirectangular (spherically projected) images, to texture planets,
moons and other spherical or semi-spherical objects.

The use of cubemaps instead of plain textures helps eliminate the artifacts happening at the poles with UV sphere
models. Other possible solutions are using icospheres or octahedronsphers, but in these seams may appear due to the
uneven texture coordinates. The image below illustrates this iusse.

Fig. 86: Detail of the north pole region of the Earth, using a regular texture (left) and using a cubemap (right). Note
the artifacts on the left image.

Cubemaps are supported for the diffuse, specular, normal, emissive, metallic, roughness and height channels. All these
can be applied to regular models. Additionally, the diffuse cubemap can be applied to the cloud layer. The keys are the
following:

• "diffuseCubemap"

• "specularCubemap"

• "normalCubemap"

• "emissiveCubemap"

• "metallicCubemap"

• "roughnessCubemap"

• "heightCubemap"

Cubemaps are composed of six individual textures for the up, down, right, left, front and back directions. They can
be easily generated from equirectangular images by using this python converter. To generate a cubemap from an
equirectangular texture, clone the repository and use the equitocubemap script:

234 Chapter 1. Contents

https://learnopengl.com/Advanced-OpenGL/Cubemaps
https://codeberg.org/langurmonkey/py360convert

Gaia Sky Documentation

equitocubemap IMAGE CUBEMAP_SIDE_RES OUTPUT_LOCATION

The six cubemap image will be saved in OUTPUT_LOCATIONwith the prefixes _ft.jpg, _bk.jpg, _up.jpg, _dn.jpg,
_rt.jpg and _lf.jpg. PNG is also supported.

In Gaia Sky, you need to point the "diffuseCubemap" property to the location of these six cubemap sides. Gaia
Sky will take the appropriate image for each cubemap side using the file name suffixes. The following suffixes are
recognized by Gaia Sky:

Table 38: File name suffixes for each cubemap side.
Side Suffixes
back bk, back, b
front ft, front, f
up up, top, u, t
down dn, bottom, d
right rt, right, r
left lf, left, l

1.5.15 Virtual Textures

Gaia Sky supports Sparse Virtual Textures (SVT), which enable ultra-high resolution partially resident textures to be
used to map planets and other objects. From the user’s perspective, virtual textures are transparent, meaning that the
user does not even need to be aware they are being used.

Contents

• Virtual Textures

– Overview

– Creating Virtual Texture Datasets

– Preparing the tiles

– Tools

– Limitations

Hint: The implementation of Sparse Virtual Textures in Gaia Sky is thoroughly explained in this external article.

Overview

Virtual Textures (VT), also known as Sparse Virtual Textures (SVT), MegaTextures, and Partially Resident Tex-
tures (PRT), have at their core the idea of splitting large textures into several tiles and only streaming the necessary
ones (i.e. the ones required to render the current view) to graphics memory in order to optimize memory usage and
enable the display of textures so large that they can’t be handled effectively by the graphics hardware. In this article we
use VT and SVT interchangeably to refer to virtual textures.

This technique aims at drastically increasing the size of usable textures in real time rendering applications by splitting
them up in tiles and streaming only the necessary ones to graphics memory. It was initially described in a primi-

1.5. Advanced topics 235

https://tonisagrista.com/blog/2023/sparse-virtual-textures/

Gaia Sky Documentation

tive form by Chris Hall in 19993 and has subsequently been improved upon. My understanding is that most modern
implementations are based on Sean Barret’s GDC 2008 talk on the topic.

Committed texture pages are kept in a texture, called cache, which is unique for all virtual textures. The size of the
cache (in tiles) can be adjusted in the Graphics Settings, virtual textures section.

Creating Virtual Texture Datasets

An SVT is essentially a quadtree which contains a downsized version of the whole texture in the root node. Each level
contains 4 times the amount of tiles of the level above, and each tile covers 4 times less area. The pixel count and
resolution of all tiles in all levels is always the same.

Fig. 87: An example of a virtual texture with 3 levels (0 to 2) for the Earth laid out as a quadtree. Note that the root
(level 0, top), covers the whole area, while successive levels have equally-sized tiles that cover less and less area each.
This VT has an aspect ratio of 2:1, so it has two root nodes at the top.

In Gaia Sky, SVTs can be packed into a dataset. To do so, we create a new directory for the dataset, preferably using the
naming convention vt-[object]-[channel]-[source]. For example, vt-earth-diffuse-nasa is a good name for a VT for the
Earth’s surface generated from a NASA dataset. Virtual Textures, like regular textures and cubemaps, can be applied
to several material properties:

• Diffuse – the color of the surface of a planet or moon, for shading.

• Specular – the specular map, for shading.

• Normal – the normal map, for shading.

• Height – the elevation map, to be used by the tessellation shader or by the parallax mapping process, depending
on the height representation chosen.

• Metallic – the metallic map, for PBR shading.

• Roughness – the roughness map, for PBR shading.

• Clouds – the cloud layer.

Typically, we create a virtual texture dataset for a pre-existing object, like the Earth, the Moon or Mars. The Gaia Sky
JSON format incorporates some syntax to update already loaded objects. For instance, we can add a diffuse virtual
texture to the Earth with the following JSON descriptor in the file vt-earth-diffuse-nasa.json:

{"updates" : [
{
"name" : "Earth",
"model": {
"material" : {

(continues on next page)

236 Chapter 1. Contents

_images/vt-quadtree.png

Gaia Sky Documentation

(continued from previous page)

"diffuseSVT" : {
"location" : "$data/virtualtex-earth-diffuse/tex",
"tileSize" : 1024

}
}

}
}

]}

The "updates" object name at the top marks the objects in the list as updates. Then, we define the name of the
object and the properties we need to update, with the same structure as in the original description file. For instance, if
diffuseSVT is a property of material, which is inside model, the same structure must be maintained in the update
file.

The following are the objects and attributes that can be updated:

• material – material and all its sub-attributes. In particular all, regular textures, cubemaps and virtual tex-
tures: - diffuse, diffuseCubemap, diffuseSVT. - specular, specularCubemap, specularSVT. - normal,
normalCubemap, normalSVT. - height, heightCubemap, heightSVT. - emissive, emissiveCubemap,
emissiveSVT. - metallic, metallicCubemap, metallicSVT. - roughness, roughnessCubemap,
roughnessSVT.

• cloud – describes the cloud layer. Can also have a virtual texture. - diffuse, diffuseCubemap, diffuseSVT.

• atmosphere – all its direct attributes.

• rotation – all its direct attributes.

Any SVT needs to specify a location and a tileSize. The location is the directory where the tiles for the different
levels are located. The tile size is just the resolution of the tiles of this SVT.

Gaia Sky can work with multiple SVTs, but they all need to have the same tile size. Additionally, the tile size needs to
be a power of two in [4, 1024].

Preparing the tiles

The dataset directory must contain a dataset descriptor file named dataset.json, and the actual data descriptor seen
in the previous section (vt-earth-diffuse-nasa.json).

A VT dataset directory looks like this:

tex/
dataset.json
vt-earth-diffuse-nasa.json

The tiles are located in the tex directory within the dataset directory. Tile files are separated by levels using directories.
Every level has the name level[level]. For example, the tiles for level 3 are all inside the tex/level3 directory.

The tex/ directory looks like the following, for a dataset with 7 levels, from 0 to 6:

level0/
level1/
level2/
level3/
level4/

(continues on next page)

1.5. Advanced topics 237

Gaia Sky Documentation

(continued from previous page)

level5/
level6/

Each level directory contains the tiles for that level. The first level contains either or two tiles (depending on the aspect
ratio of the virtual texture), the second level contains 4 times that number, and so on (each tile is subdivided into 4
sub-tiles in the next level). Tile files are named tx_[col]_[row].ext, where col is the column, and row is the row.
Supported formats are JPG and PNG.

The level1/ directory looks like this:

tx_0_0.jpg
tx_0_1.jpg
tx_1_0.jpg
tx_1_1.jpg
tx_2_0.jpg
tx_2_1.jpg
tx_3_0.jpg
tx_3_1.jpg

When in doubt, look at the existing VT datasets.

It is important to know that levels (except level 0) do not need to be complete. Missing tiles will be queried at higher
levels automatically.

Tools

We did not find any open-source tools to our liking to create virtual texture tiles from high-resolution texture data, so
we created our own. You can find them in the virtual texture tools repository. This repository contains two scripts:

• split-tiles — can split a texture into square tiles of a given resolution, and names the tiles in the format
expected by Gaia Sky (and also Celestia), which is tx_[col]_[row].ext. The output format, quality and
starting column and row are configurable via arguments.

• generate-lod — given a bunch of tiles and a level number, this script generates all the upper levels by stitching
and resizing tiles. It lays them out in directories with the format levelN, where N is the zer-based level. The
input tiles are also expected in a directory. The output format and quality are configurable.

Limitations

The limitations of our implementation are the following:

• Due to the fact that all SVTs in the scene share the same cache, right now we can’t have SVTs with different tile
sizes in the same scene.

• Similarly, only square tiles are supported. Actually, I can’t think of a single good use case for non-square tiles.

• Supported virtual texture aspect ratios are n:1, with 𝑛 ≥ 1. This is due to the fact that VT quadtrees are square
by definition (1:1), and we have an array of root quadtree nodes that stack horizontally in the tree object. It is
currently not possible to have a VT with a greater height than width.

• Performance is not very good, especially with many SVTs running at once. This may be due to the shader
mimpmap level lookups. This produces 𝑑𝑒𝑝𝑡ℎ texture lookups (mip levels) in the worst-case scenario when only
the root node is available in the cache. A workaround would be to fill lower levels, additionally to the tile level, in
the indirection buffer whenever a tile enters the cache. This would also have a (CPU) overhead. Might be faster.

238 Chapter 1. Contents

https://codeberg.org/langurmonkey/virtualtexture-tools

Gaia Sky Documentation

• All SVTs in the scene share the same tile detection pass. This means that there is only one render operation in
that pass. This might be good or bad, I’m not quite sure yet.

1.5.16 Mesh warping

It is possible to apply an arbitrary warping mesh to distort the final image using a PFM (portable float map) file.

The file format is rather simple, and is described here. The file contains an array of NxM 3-component pixels in RGB
(grayscale not supported). Each position contains the mapped resulting location in UV, in the R and G components
respectively, in [0, 1]. The geometry warp format is the same as in the MPCDI v2.0 specification, section 3.6.2 (see
here).

This file is read and converted into a mesh by Gaia Sky. The mesh is used to distort the final image at the end of the
rendering pipeline.

In order to specify a PFM warping mesh file, you need to edit the configuration file of Gaia Sky and add a few lines in
the postprocess section:

postprocess:
[...]
warpingMesh:
pfmFile: /path/to/your/warping-mesh.pfm

A few warping mesh examples (big endian) are provided below:

• Identity – warp-identity.pfm – identity function, 𝑥′ = 𝑥, 𝑦′ = 𝑦.

• Flip X – warp-invert-x.pfm – flips the X coordinate, 𝑥′ = 1− 𝑥, 𝑦′ = 𝑦.

• Flip Y – warp-invert-y.pfm – flips the Y coordinate, 𝑥′ = 𝑥, 𝑦′ = 1− 𝑦.

• Flip XY – warp-invert-xy.pfm – flips the X and Y coordinates, 𝑥′ = 1− 𝑥, 𝑦′ = 1− 𝑦.

• X^2 – warp-x2.pfm – applies a square function to X, 𝑥′ = 𝑥2, 𝑦′ = 𝑦.

• X^2, Y^2 – warp-x2y2.pfm – applies a square function to X and Y, 𝑥′ = 𝑥2, 𝑦′ = 𝑦2.

1.6 Gaia Sky VR

Note: Gaia Sky VR is beta software. It works reasonably well, but you may encounter hiccups here and there..

Gaia Sky VR is the VR version of Gaia Sky. It runs on multiple headsets and operating systems using the OpenXR
API.

Contents

• Gaia Sky VR

– System requirements

– Set-up

∗ Windows

∗ Linux

1.6. Gaia Sky VR 239

https://netpbm.sourceforge.net/doc/pfm.html
https://vesa.org/vesa-standards/
https://vesa.org/vesa-standards/
https://zah.uni-heidelberg.de/gaia/outreach/gaiasky
https://www.khronos.org/OpenXR/
https://www.khronos.org/OpenXR/

Gaia Sky Documentation

– Downloading datasets

– Controls

– Caveats

– Common problems

Our tests have been carried out with the Oculus Rift CV1 headset on Windows and the Valve Index on Windows and
Linux. We also successfully tested it with the HP Reverb G2. Due to the system-agnostic nature of OpenXR, other
VR HMD systems and controllers supporting OpenXR should also work fine.

Note: Gaia level-of-detail star catalogs don’t work very well in VR and may cause performance issues. We recommend
using static star catalogs like DR3-tiny, DR3-weeny, Hipparcos or GCNS5.

Currently, the regular installation of Gaia Sky also includes the VR version.

1.6.1 System requirements

The minimum system requirements for running Gaia Sky VR are roughly the following:

VR System OpenXR-compatible VR system (HMD, VR controllers, trackers)
Operating system Windows 10+ / Linux
CPU Intel Core i5 4rd Generation or similar (4+ core)
GPU VR-capable GPU (GTX 970+ strongly recommended)
Memory 8+ GB RAM
Hard drive 1 GB of free disk space (depends on datasets)

1.6.2 Set-up

Essentially, you need an OpenXR runtime installed system-wide.

1. Install runtime — Follow the provided vendor instructions and install the software PC application for your VR
headset. This application provides the OpenXR runtime. This is the Oculus/Meta PC app for Meta headsets, or
SteamVR for the HTC Vive/Pro and the Valve Index, for example.

2. Set active OpenXR runtime — Set the runtime as the active OpenXR runtime. This typically is in the settings
dialog of the vendor software. This step enables your particular OpenXR runtime to be discoverable by OpenXR-
enabled applications like Gaia Sky VR.

3. Run Gaia Sky VR — Launch Gaia Sky VR and it should connect to your active OpenXR runtime automatically.
Refer to the following sub-sections to learn how to launch Gaia Sky VR for your system.

240 Chapter 1. Contents

https://www.khronos.org/OpenXR

Gaia Sky Documentation

Windows

The easiest way to get it running in Windows is to install the latest version of Gaia Sky and directly run the executable
gaiaskyvr.exe file. You should also have a start menu entry called ‘Gaia Sky VR’, if you chose to create it during
the installation.

Linux

Download and install Gaia Sky, and then run:

$ gaiasky -vr

1.6.3 Downloading datasets

See the Dataset manager section.

1.6.4 Controls

OpenXR defines a system-agnostic input scheme where the application defines actions which can be bound to different
input device hardware. We offer a set of comprehensive bindings for the Oculus Rift CV1, the HTC Vive, the Valve
Index and some others. However, if your headset is not supported you can bind the actions to your controller input
yourself in your runtime. Please consult the documentation of your OpenXR runtime to learn how to do so.

The default controls are the following:

1.6.5 Caveats

Gaia Sky VR has been tested with a very small sample of VR systems. Only the Oculus Rift CV1 and the Valve Index
are currently well tested. Please, do not expect everything to work flawlessly with other systems and/or headsets.

1.6.6 Common problems

• Make sure your runtime is set as the active OpenXR runtime.

• If you experience low frame rates try using a small and static star catalog like DR3-weeny or Hipparcos instead
of a Gaia DR3 LOD one.

• If you are using an Nvidia Optimus-powered laptop, make sure that the java.exe you are using to run Gaia Sky
VR is set up properly in the Nvidia Control Panel to use the discrete GPU.

1.7 Additional resources

This page gathers a list of learning resources about Gaia Sky. Find them below int the video tutorials and workshops
sections.

1.7. Additional resources 241

https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#input
https://www.pcgamer.com/nvidia-control-panel-a-beginners-guide/

Gaia Sky Documentation

Fig. 88: The default controls for Gaia Sky VR with the Oculus Touch controllers

242 Chapter 1. Contents

Gaia Sky Documentation

1.7.1 Video tutorials

• Gaia Sky video tutorials

• Gaia Sky videos channel

1.7.2 Presentations

• Gaia Sky VR – AR/VR for Space Programmes, ESA/ESTEC, Noordwijk, The Netherlands. 2023.

1.7.3 Workshop notes

Outreach tutorial (MWGaiaDN 2024)

Hint: This tutorial is designed to be followed with Gaia Sky 3.5.8!

This page contains the tutorial on the general usage of Gaia Sky given at the MWGaiaDN Induction School in PLNT
Leiden (February 2, 2024).

The main aim of this tutorial is to provide a general understanding of the scripting system in Gaia Sky, and to train the
participants in the creation of outreach videos.

Presentation (slides): Find the accompanying presentation for this tutorial here.

The topics covered in this tutorial are the following:

• Gaia Sky introduction:

– Dataset manager.

– Controls, movement, selection.

– User interface.

– Camera, type visibility.

– Render modes (3D, planetarium, 360, reprojection).

– Visual settings.

– External datasets (loading, filters, SAMP).

• Scripting:

– The API (basic functions, etc.).

– Writing Python scripts for Gaia Sky.

– Running scripts on a Gaia Sky instance.

– Advanced topics: camera and scene parking runnables.

• Camera paths:

– Recording and playback.

– Keyframe system.

– Still frame output system.

• Still frame output mode.

1.7. Additional resources 243

https://odysee.com/@GaiaSky:8/Gaia-Sky-tutorials:b
https://odysee.com/@GaiaSky
https://gaia.ari.uni-heidelberg.de/gaiasky/presentation/202312/
https://gaia.ari.uni-heidelberg.de/gaiasky/presentation/202402/mwgaiadn/

Gaia Sky Documentation

Estimated duration: 3 hours

Before starting. . .

In order to follow the course it is strongly recommended to have a local installation of Gaia Sky 3.5.8 so that you can
explore and try out the teachings for yourself. In order to install Gaia Sky, follow the instructions for your operating
system in the installation section of the Gaia Sky documentation.

Welcome window

When your start up Gaia Sky 3.5.8, you will be greeted with this view:

Fig. 89: Gaia Sky welcome UI

From here you can access the global preferences (cog wheel to the bottom right), fire up the dataset manager, or start
Gaia Sky.

Dataset manager

The dataset manager is used to download, update and manage datasets. It consists of two tabs:

• Available for download — contains datasets that are available to be downloaded and installed.

• Installed — contains the datasets currently installed locally.

The first time your start Gaia Sky you need to download at least the Base data pack (key default-data) to even be
able to start the program. The base data pack contains essential data like most of the Solar System, the Milky Way,
grids, constellations and other objects.

You can explore the available datasets freely.

244 Chapter 1. Contents

../_images/202402_welcome.jpg

Gaia Sky Documentation

Fig. 90: The dataset manager

Basic controls

When Gaia Sky is ready to go, you will be presented with this screen:

In it you can see a few things already. To the bottom right the focus panel tells you that you are in focus mode, meaning
that all our movement is relative to the focus object. The default focus of Gaia Sky is the Earth. You can also see in
the quick info bar at the top that our focus is the Earth, and that the closest object to our location is also the Earth.
Additionally you see that your home object is again the Earth. Finally the control panes are accessible via the buttons
anchored to the top left. If you click on one of these buttons, the respective pane opens. We will use them later.

Movement

But right now let’s try some movement. In focus mode the camera will by default orbit around the focus object. Try
clicking and dragging with your left mouse button. The camera should orbit around the Earth showing parts of the
surface which were previously hidden. You will notice that the whole scene rotates. Now try scrolling with your
mouse wheel. The camera will move either farther away from (scroll down) or closer up to (scroll up) the Earth. You
can always press and hold z to speed up the camera considerably. Now, if you click and drag with your right mouse
button, you can offset the focus object from the center, but your movement will still be relative to it.

You can also use your keyboard arrows ← ↑ → ↓ to orbit left or right around the focus object, or move closer to or
away from it.

You can use shift with a mouse drag in order to roll the camera.

More information on the controls is available in the controls section of the Gaia Sky user manual.

1.7. Additional resources 245

../_images/202402_dataset-manager.jpg

Gaia Sky Documentation

Fig. 91: Gaia Sky default scene

Selection

You can change the focus by simply double clicking on any object on the scene. You can also press f to bring up the
search dialog where you can look up objects by name. Try it now. Press f and type in “mars”, without the quotes,
and hit esc. You should see that the camera now points in the direction of Mars. To actually go to Mars simply scroll

up until you reach it, or click on the icon next to the name in the focus info panel. If you do so, Gaia Sky takes
control of the camera and brings you to Mars.

If you want to move instantly to your current focus object, hit ctrl + g.

At any time you can use the home key in your keyboard to return back to Earth or whatever home object you have
defined in the configuration file.

The User Interface

The user interface of Gaia Sky consists of basically two components: keyboard shortcuts and a graphical user interface
in the form of a few panes, buttons and windows. The most important of those are the control panes, accessible via a
series of buttons anchored to the left.

246 Chapter 1. Contents

../_images/202402_ui-initial.jpg

Gaia Sky Documentation

Fig. 92: Gaia Sky user interface with the most useful functions

Control panes

Hint: The control panes are described in detail in its own section of the Gaia Sky user manual.

The control panes (previously called control panel in the old UI—it can still be used but is off by default) are made
up of seven different panes, accessed using the buttons anchored to the top-left: Time, Camera, Type visibility, Visual
settings, Datasets, Location log and Bookmarks. Each pane can be expanded and collapsed by clicking on the button
or by using the respective keyboard shortcut (listed in the button tooltip).

Anchored to the bottom-left of the screen we can find six buttons to perform a few special actions:

• Toggle the mini-map

• Load a dataset

• Open the preferences window

• Show the session log

• Show the help dialog

• Exit Gaia Sky

1.7. Additional resources 247

../_images/202402_ui-all.jpg

Gaia Sky Documentation

Quick info bar

To the top of the screen you can see the quick info bar which provides information on the current time, the current
focus object (if any), the current closest object to our location and the current home object. The colors of these objects
(green, blue, orange) correspond to the colors of the crosshairs. The crosshairs can be enabled or disabled from the
interface tab in the preferences window (use p to bring it up).

Debug panel

Gaia Sky has a built-in debug information panel that provides system information and is hidden by default. You can
bring it up with ctrl + d, or by ticking the “Show debug info” check box in the system tab of the preferences window.
By default, the debug panel is collapsed.

Fig. 93: Collapsed debug panel

You can expand it with the + symbol to get additional information.

Fig. 94: Expanded debug panel

As you can see, the debug panel shows information on the current graphics device, system and graphics memory, the
amount of objects loaded and on display, the octree (if a LOD dataset is in use) or the SAMP status.

Additional debug information can be obtained in the system tab of the help dialog (? or h).

248 Chapter 1. Contents

../_images/debug-collapsed.jpg
../_images/debug-expanded.jpg

Gaia Sky Documentation

Time controls

Gaia Sky can simulate time. Play and pause the simulation using the / Play/Pause buttons in the time pane,
or toggle using Space. You can also change time warp, which is expressed as a scaling factor, using the provided Warp

factor slider. Use , or and . or to divide by 2 and double the value of the time warp respectively. If you keep
either of those pressed, the warp factor will increase or decrease steadily.

Use the Reset time and warp button to reset the time warp to x1, and set the time to the current real world time (UTC).

Fig. 95: The time pane in the controls window of Gaia Sky.

Now, go ahead and press home. This will bring us back to Earth. Now, start the time with or space and drag the
slider slightly to the right to increase its speed. You will see that the Earth rotates faster and faster as you move the
slider to the right. Now, drag it to the left until time is reversed and the Earth starts rotating in the opposite direction.
Now time is going backwards!

If you set the time warp high enough you will notice that as the bodies in the Solar System start going crazy, the stars
start to slightly move. That’s right: Gaia Sky also simulates proper motions.

Camera modes

We have already talked about the focus camera mode, but Gaia Sky provides some more Camera modes:

• 0 - Free mode: the camera is not locked to a focus object and can roam freely. The movement is achieved with the
scroll wheel of your mouse, and the view is controlled by clicking and draggin the left and right mouse buttons

• 1 - Focus mode: the camera is locked to a focus object and its movement depends on it

• 2 - Game mode: similar to free mode but the camera is moved with wasd and the view (pitch and yaw) is
controlled with the mouse. This control system is commonly found in FPS (First-Person Shooter) games on PC

• 3 - Spacecraft mode: take control of a spacecraft (outside the scope of this tutorial)

The most interesting mode is free mode which lets us roam freely. Go ahead and press 0 to try it out. The controls
are a little different from those of focus mode, but they should not be to hard to get used too. Basically, use your left
mouse button to yaw and pitch the view, use shift to roll, and use the right mouse button to pan.

1.7. Additional resources 249

Gaia Sky Documentation

Special render modes

There are three special render modes: 3D mode, planetarium mode, panorama mode and orthosphere view. You can
access these modes using the buttons at the bottom of the camera pane or the following shortcuts:

• or ctrl + s - 3D mode

• or ctrl + p - Planetarium mode

• or ctrl + k - Panorama mode

• or ctrl + j - Orthosphere view

Component visibility

The visibility of most graphical elements can be switched off and on using the buttons in the type visibility pane in

the control panel. For example you can hide the stars by clicking on the stars button. The object types available
are the following:

• – Stars

• – Planets

• – Moons

• – Satellites

• – Asteroids

• – Star clusters

• – Milky Way

• – Galaxies

• – Nebulae

• – Meshes

• – Equatorial grid

• – Ecliptic grid

250 Chapter 1. Contents

Gaia Sky Documentation

• – Galactic grid

• – Labels

• – Titles

• – Orbits

• – Locations

• – Cosmic locations

• – Countries

• – Constellations

• – Constellation boundaries

• – Rulers

• – Particle effects

• – Atmospheres

• – Clouds

• – Axes

• – Velocity vectors

• – Others

Velocity vectors

One of the elements, the velocity vectors, enable a few properties when selected. See the velocity vectors section in
the Gaia Sky user manual for more information on that.

• Number factor – control how many velocity vectors are rendered. The stars are sorted by magnitude (ascending)
so the brightest stars will get velocity vectors first

• Length factor – length factor to scale the velocity vectors

• Color mode – choose the color scheme for the velocity vectors

• Show arrowheads – Whether to show the vectors with arrow caps or not

Hint: Control the width of the velocity vectors with the line width slider in the visual settings pane.

1.7. Additional resources 251

Gaia Sky Documentation

Fig. 96: Velocity vectors in Gaia Sky

Visual settings

The visual settings pane contains a few options to control the shading of stars and other elements:

• Star brightness – control the brightness of stars

• Magnitude multiplier – exponent of power function that controls the brightness of stars. Controls the brightness
difference between bright and faint stars

• Star glow factor – close-by star size

• Point size – size of point-like stars and other objects

• Base star level – the minimum brightness level for all stars

• Ambient light – control the amount of ambient light. This only affects the models such as the planets or satellites

• Line width – control the width of all lines in Gaia Sky (orbits, velocity vectors, etc.)

• Label size – control the size of the labels

• Elevation multiplier – scale the height representation for planets with elevation maps

252 Chapter 1. Contents

../_images/velocity-vectors.jpg

Gaia Sky Documentation

Fig. 97: The visual settings pane.

1.7. Additional resources 253

../_images/pane-visual-settings.jpg

Gaia Sky Documentation

External datasets

Gaia Sky supports the loading of external datasets at runtime. Right now, VOTable, csv and FITS formats are sup-
ported. Gaia Sky needs some metadata in the form of UCDs or column names in order to parse the dataset columns
correctly. Refer to the STIL data loader section of the Gaia Sky user manual for more information on how to prepare
your dataset for Gaia Sky.

The datasets loaded in Gaia Sky at a certain moment can be found in the datasets pane of the control panel.

Fig. 98: Datasets pane of Gaia Sky.

There are four main ways to load new datasets into Gaia Sky:

• Directly from the UI, using the button or pressing ctrl + o

• Through SAMP, via a connection to another astronomy software package such as Topcat or Aladin

• Via a script (addressed later on in the workshop if time allows)

• Creating a descriptor file, saving it, along with the dataset, in the data directory, and selecting it in the dataset
manager (avanced!)

Loading a dataset from the UI – Go ahead and remove the current star catalog by clicking on the icon in the

datasets pane. Now, download a raw Hipparcos dataset VOTable, click on the icon (or press ctrl + o) and select
the file. In the next dialog just click Ok to start loading the catalog. In a few moments the Hipparcos new reduction
dataset should be loaded into Gaia Sky.

Loading a dataset via SAMP – This section presupposes that Topcat is installed on the machine and that the user
knows how to use it to connect to the VO to get some data. The following video demonstrates how to do this (Odysee
mirror, YouTube mirror):

Loading a dataset via scripting – Wait for the scripting section of this course.

254 Chapter 1. Contents

../_images/202402_ds-1.jpg
https://gaia.ari.uni-heidelberg.de/gaiasky/files/catalogs/hip/hipparcos.vot
https://odysee.com/@GaiaSky:8/gaia-sky-loading-data-with-topcat:9
https://odysee.com/@GaiaSky:8/gaia-sky-loading-data-with-topcat:9
https://youtu.be/sc0q-VbeoPE

Gaia Sky Documentation

Fig. 99: Loading a dataset from Topcat through SAMP (click for video)

Preparing a descriptor file – Not addressed in this tutorial. See the catalog formats section for more information.

Working with datasets

All datasets loaded are displayed in the datasets pane in the control panel. A few useful tips for working with datasets:

• The visibility of individual datasets can be switched on and off by clicking on the button

• Remove datasets with the button

• You can highlight a dataset by clicking on the button. The highlight color is defined by the color selector
right on top of it. Additionally, we can map an attribute to the highlight color using a color map. Let’s try it out:

1. Click on the color box in the Hipparcos dataset we have just loaded from Topcat via SAMP

2. Select the radio button “Color map”

3. Select the rainbow color map

4. Choose your attriubte. In this case, we will use the number of transits, ntr

5. Click Ok

6. Click on the highlight dataset icon to apply the color map

• You can define basic filters on the objects of the dataset using their attributes from the dataset preferences

window . For example, we can filter out all stars with 𝛿 > 50∘:

1. Click on the dataset preferences button

2. Click on Add filter

3. Select your attribute (declination 𝛿)

4. Select your comparator (<)

1.7. Additional resources 255

https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202401_mwgaiadn/tap-load-topcat.mkv

Gaia Sky Documentation

5. Enter your value, in this case 50

6. Click Ok

7. The stars with a declination greater than 50 degrees should be filtered out

Multiple filters can be combined with the AND and OR operators

External information

Gaia Sky offers three ways to display external information on the current focus object: Wikipedia, Gaia archive and
Simbad.

Fig. 100: Wikipedia, Gaia archive and Simbad connections

• When the +Info button appears in the focus info pane, it means that there is a Wikipedia article on this object
ready to be pulled and displayed in Gaia Sky

• When the Archive button appears in the focus info pane, it means that the full table information of selected star
can be pulled from the Gaia archive

• When the Simbad link appears in the focus info pane, it means that the objects has been found on Simbad, and
you can click the link to open it in your web browser

256 Chapter 1. Contents

../_images/external-info.jpg

Gaia Sky Documentation

Scripting

Gaia Sky exposes an API that is accessible through Python (via Py4j) or through HTTP over a network (using the REST
API HTTP server). The full documentation on the scripting system can be found in the scripting section of the Gaia
Sky user manual.

In this tutorial, we focus on the writing of Python scripts that tap into the Gaia Sky API.

• Scripting API specification:

– API Gaia Sky master (development branch)

– API Gaia Sky 3.5.8

• Interesting showcase scripts can be found here.

• Basic testing scripts can be found here.

This section includes a hands-on session where we work on some scripts (full file listing) and write new ones to later
run them on Gaia Sky. The scripts are:

• Locating_the_Hyades_tidal_tails.py — a simple sequential script which exemplifies some of the most common
API calls, and can be used to capture a video. The script requires the following data and subtitles files to run
(save them in the same directory as the script):

– Aldebaran.vot

– Hyades_stars.csv

– Hyades_subtitles.srt

– distSDR3_N.csv

• line-objects-update.py — a script showcasing the feature to run scripting code within the Gaia Sky main loop,
so that it runs every frame. This is used to run update operations every single frame. In our test script, we create
a line between the Earth and the Moon, start the time simulation, and update the position of the line every frame
so that it stays in sync with the scene.

Camera paths

Gaia Sky includes a feature to record and play back camera paths. This comes in handy if you want to showcase a
certain itinerary through a dataset, for example.

Recording a camera path — The system will capture the camera state at every frame and save it into a .gsc (for Gaia

Sky camera) file. You can start a recording by clicking on the icon in the camera pane of the control panel. Once

the recording mode is active, the icon will turn red . Click on it again in order to stop recording and save the camera
file to disk with an auto-generated file name (default location is $GS_DATA/camera (see the folders section in the Gaia
Sky documentation).

Playing a camera path — In order to playback a previously recorded .gsc camera file, click on the icon and
select the desired camera path. The recording will start immediately.

Hint: Mind the FPS! The camera recording system stores the position of the camera for every frame! It is important
that recording and playback are done with the same (stable) frame rate. To set the target recording frame rate, edit the
“Target FPS” field in the camcorder settings of the preferences window. That will make sure the camera path is using
the right frame rate. In order to play back the camera file at the right frame rate, you can edit the “Maximum frame
rate” input in the graphics settings of the preferences window.

1.7. Additional resources 257

https://codeberg.org/gaiasky/gaiasky/src/branch/master/core/src/gaiasky/script/IScriptingInterface.java
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/javadoc/3.5.8/gaiasky/script/IScriptingInterface.html
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/showcases
https://codeberg.org/gaiasky/gaiasky/src/branch/master/assets/scripts/tests
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/Locating_the_Hyades_tidal_tails.py
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/Aldebaran.vot
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/Hyades_stars.csv
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/Hyades_subtitles.srt
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/distSDR3_N.csv
https://gaia.ari.uni-heidelberg.de/gaiasky/files/temp/scripts/202402_mwgaiadn/line-objects-update.py

Gaia Sky Documentation

Fig. 101: Location of the controls of the camcorder in Gaia Sky

More information on camera paths in Gaia Sky can be found in the camera paths section of the Gaia Sky user manual.

Keyframe system

The camera path system offers an additional way to define camera paths based on keyframes. Essentially, the user
defines the position and orientation of the camera at certain times and the system generates the camera path from these
definitions. Gaia Sky incorporates a whole keyframe definition system which is outside the scope of this tutorial.

As a very short preview, in order to bring up the keyframes window to start defining a camera path, click on the icon

.

More information on the keyframe system can be found in the keyframe system subsection of the Gaia Sky user manual.

Frame output mode

In order to create high-quality videos, Gaia Sky offers the possibility to export every single still frame to an image file.
The resolution of these still frames can be set independently of the current screen resolution.

You can start the frame output system by pressing F6. Once active, the frame rate will go down (each frame is being
saved to disk). The save location of the still frame images is, by default, $GS_DATA/frames/[prefix]_[num].jpg,
where [prefix] is an arbitrary string that can be defined in the preferences. The save location, mode (simple or
advanced), and the resolution can also be defined in the preferences.

Once we have the still frame images, we can convert them to a video using ffmpeg or any other encoding software.
Additional information on how to convert the still frames to a video can be found in the capturing videos section of the
Gaia Sky user manual.

258 Chapter 1. Contents

../_images/202402_camera-paths.jpg

Gaia Sky Documentation

Fig. 102: The configuration screen for the frame output system

Conclusion

Congratulations! You have reached the end of the tutorial. You are now a Gaia Sky master ;)

Scripting workshop (DPAC 2023)

This page has been retired. However, you can still browse the workshop notes in the link below:

• Scripting workshop notes (DPAC 2023)

General tutorial (DPAC 2021)

This page has been retired. However, you can still browse the tutorial notes in the link below:

• Tutorial notes (DPAC 2021)

Video production tutorial (DPAC 2020)

This page has been retired. However, you can still browse the tutorial notes in the link below:

• Video production tutorial notes (DPAC 2020)

1.7. Additional resources 259

../_images/2023_frame-output-prefs.jpg
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/3.5.8/workshops/dpac-plenary-hdb-2023.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/3.5.8/workshops/dpac-plenary-online-2021.html
https://gaia.ari.uni-heidelberg.de/gaiasky/docs/3.5.8/workshops/dpac-plenary-hdb-2020.html

Gaia Sky Documentation

1.8 Frequently Asked Questions

1.8.1 Q: What is the base-data package?

The Base data package is required for Gaia Sky to run and contains basically the Solar System data (textures, models,
orbits and attitudes of planets, moons, satellites, etc.). You can’t run Gaia Sky without the base data package.

1.8.2 Q: Why do you have two different download pages?

We list the most important downloads in the official webpage of Gaia Sky (here) for convenience. The server listing
(here) provides access to current and old releases.

At the end of the day, if you use the download manager of Gaia Sky, you will never see any of these. If you want to
download the data manually, you can do so using either page.

1.8.3 Q: Why so many Gaia-DR catalogs?

We offer several different catalogs based on the latest Gaia data release. Only one should be used at a time, as they
are different subsets of the same data, meaning that smaller catalogs are contained in larger catalogs. For example, the
stars in edr3-default are contained in edr3-large. We offer so many to give the opportunity to explore the Gaia
data to everyone. Even if you have a low-end PC, or don’t have lots of disk space to spare, you can still run Gaia Sky
with the smaller subsets, which only contain the best stars in terms of parallax relative error. If you have a more capable
machine, you can explore larger and larger slices and get more stars in.

1.8.4 Q: Gaia Sky crashes at start-up, what to do?

First, make sure that your drivers are up to date and your graphics card supports OpenGL 3.2 and GLSL 3.3.

Some startup crashes are due to inconsistencies in the data. Usually, removing the data folder (~/.local/share/
gaiasky/data on Linux, %userprofile%\.gaiasky\data on Windows, ~/.gaiasky/data on macOS) solves
the problem. When Gaia Sky starts again, you will need to re-download the base data pack and the datasets.

Debug mode
You can activate debug mode to force Gaia Sky to print out much more information, which may help in pinpointing
what is going wrong. To do so, you need to launch Gaia Sky from the command line (PowerShell or cmd on Windows)
using the -d flag.

$ gaiasky -d

Configuration file
Sometimes, the configuration file may get corrupted. To fix this, remove it (~/.config/gaiasky/config.yaml on
Linux, %userprofile%\.gaiasky\config.yaml on Windows, ~/.gaiasky/config.yaml on macOS) and start
Gaia Sky again. The default configuration file will be copied to that location and used.

Getting a crash log
For modern Gaia Sky versions (> 2.2.0), you can find the logs in this location.

For old Gaia Sky versions (< 2.2.0), you may need to run Gaia Sky from a terminal. In this case, the procedure depends
on your Operating System.

On Linux, just run Gaia Sky from the command line and copy the log.

260 Chapter 1. Contents

https://zah.uni-heidelberg.de/institutes/ari/gaia/outreach/gaiasky/downloads/
https://gaia.ari.uni-heidelberg.de/gaiasky/releases/

Gaia Sky Documentation

On Windows, files named output.log and error.log should be created in the installation folder of Gaia Sky. Check
if they exist and, if so, attach them to the bug report. Otherwise, just open Power Shell, navigate to the installation folder
and run the gaiasky.cmd script. The log will be printed in the Power Shell window.

On macOS, open a Terminal window and write this:

$ cd /Applications/Gaia\ Sky.app/Contents/Resources/app
$ chmod u+x ./gaiasky
$./gaiasky

This will launch Gaia Sky in the terminal. Copy the log and paste it in the bug report. Here is a video demonstrating
how to do this on macOS.

Once you have a log, create a bug report here, attach the log, and we’ll get to it ASAP.

1.8.5 Q: I’m running out of memory, what to do?

Don’t fret. Check out the maximum heap space section to learn how to increase the maximum heap memory allocated
to Gaia Sky. If you computer does not have enough physical RAM, try using a smaller dataset.

1.8.6 Q: I can’t see the elevation data on Earth or other planets!

First, make sure you are using at least version 2.2.0. Then, make sure that your graphics card supports tessellation
(OpenGL 4.x). Then, download the High-resolution texture pack using the download manager and select High or
Ultra in graphics quality. This is not strictly necessary, but it is much better to use higher resolution data if possible.
Finally, select Tessellation in the “Elevation representation” drop-down of the graphics pane in the settings window.
See the elevation (height) section.

1.8.7 Q: What is the internal reference system used in Gaia Sky?

The reference system is described in Internal reference system. The internal workings of Gaia Sky are described in this
paper.

1.8.8 Q: Can I contribute?

Yes. You can contribute translations (currently EN, DE, CA, FR, SK, ES and BG are available) or code. Please, have
a look at the contributing guidelines.

1.8.9 Q: I like Gaia Sky so much, can I donate to contribute to the project?

Thanks a lot, but no. You may donate to any other awesome open source project of your choosing instead.

1.8. Frequently Asked Questions 261

https://youtu.be/B1wbzN-Zk_k
https://codeberg.org/gaiasky/gaiasky/issues
https://vcg.iwr.uni-heidelberg.de/publications/pubdetails/Sagrista2019GaiaSky/
https://vcg.iwr.uni-heidelberg.de/publications/pubdetails/Sagrista2019GaiaSky/
https://codeberg.org/gaiasky/gaiasky/src/branch/master/CONTRIBUTING.md

Gaia Sky Documentation

1.9 Changelog

• Comprehensive version history

• Detailed changelog

• Full commit history

1.10 About

1.10.1 Contact

If you have doubts or issues you can contact us using one of the following methods.

• Submit an issue to our bug tracking system.

• Drop us a line at tsagrista@ari.uni-heidelberg.de.

Do not forget to visit our Homepage@ARI.

1.10.2 Author

Toni Sagristà Sellés – tonisagrista.com

1.10.3 Acknowledgements

The most up to date list of acknowledgements is always in the ACKNOWLEDGEMENTS.md file.

Funding for the project is provided by the following agencies:

• ZAH

• DLR

• BMWi

1.10.4 Stats

Gaia Sky download numbers (including documentation requests and data packages) can be found here.

262 Chapter 1. Contents

https://codeberg.org/gaiasky/gaiasky/releases
https://codeberg.org/gaiasky/gaiasky/src/branch/master/CHANGELOG.md
https://codeberg.org/gaiasky/gaiasky/commits/branch/master
https://codeberg.org/gaiasky/gaiasky/issues
mailto:tsagrista@ari.uni-heidelberg.de
https://www.zah.uni-heidelberg.de/gaia/outreach/gaiasky/
https://tonisagrista.com
https://codeberg.org/gaiasky/gaiasky/src/branch/master/ACKNOWLEDGEMENTS.md
https://zah.uni-heidelberg.de
https://www.dlr.de
https://www.bmwi.de
https://gaia.ari.uni-heidelberg.de/gaiasky/stats

	Contents
	Installation and running
	System requirements
	Download
	Installation procedure
	Linux
	Flatpak
	AppImage
	Unix installer
	DEB package
	RPM package
	AUR package

	Windows
	macOS
	TAR.GZ

	Run from source
	Requirements
	Getting the catalog data
	Compiling and running

	CLI arguments
	Packaging the software

	System Directories
	Datasets location
	Logs and crash reports

	Quick start guide
	Before starting…
	Welcome window
	Dataset manager
	Basic controls
	Movement
	Selection

	The user interface
	Control panes
	Camera info panel
	Quick info bar
	System info panel
	Time controls

	Camera modes
	Special render modes
	Type visibility
	Velocity vectors

	Visual settings
	External datasets
	Working with datasets

	External information
	Scripting
	A basic script
	Gaia Sky API
	Showcase scripts
	Hands-on session

	Camera paths
	Keyframe system

	Frame output mode
	Create a video with ffmpeg

	Conclusion

	User manual
	Dataset manager
	Welcome screen
	Dataset manager
	Data location
	Available datasets
	Installed datasets

	Controls
	Keyboard controls
	Keyboard mappings
	Free/focus mode controls
	Spacecraft mode controls

	Mouse controls
	Focus mode
	Free mode
	Game mode

	Gamepad controls
	Default camera mappings
	Spacecraft camera mappings
	Gamepad UI

	GUI navigation

	User interface
	Control panes
	Time pane
	Camera pane
	Visibility pane
	Per-object visibility
	Velocity vectors

	Visual settings pane
	Datasets pane
	Location log pane
	Bookmarks pane

	Camera info panel
	Quick info bar
	Action buttons
	Minimap
	Load dataset
	Preferences window
	System log
	About/help
	Exit

	System info panel

	Camera settings
	Camera modes
	Focus mode
	Object tracking

	Free mode
	Game mode
	Spacecraft mode

	Camera behaviors
	Cinematic behavior
	Non-cinematic behavior

	Search objects
	Camera info panel
	Focus pane
	Mouse pointer
	Camera

	Object visiblity
	Datasets
	Preparing datasets
	Loading datasets
	Star catalogs
	Particle datasets
	Star cluster catalogs
	Variable star catalogs

	Datasets pane
	Dataset highlighting
	Dataset visual settings
	Dataset filters
	Dataset transformations
	Dataset inforamtion

	Bookmarks
	Creating bookmarks

	Location log
	System information
	System information panel
	Debug mode

	Camera paths
	Camera path file format
	Camcorder
	Recording camera paths
	Frame rate

	Keyframes editor
	Keyframes file format
	Creating and editing keyframes
	Adding keyframes
	Keyframes list
	Playback controls
	Export keyframes to camera paths
	Keyframes preferences
	Export keyframes with OptFlowCam

	Playing camera paths

	Settings and configuration
	Graphics settings
	Resolution and mode
	Visual settings

	Scene settings
	Interface settings
	Performance
	Controls
	Screenshots
	Frame output
	Camcorder
	Panorama mode
	Planetarium mode
	Data
	Gaia

	System

	Scripting
	Quick start
	Requirements
	Running a test script

	The Gaia Sky API
	Using the API remotely
	API documentation

	Writing scripts for Gaia Sky
	Backing up and restoring settings
	Logging to Gaia Sky and Python
	Method and attribute access
	Strict parameter types
	Loading datasets from scripts
	Camera transitions
	Synchronizing with the main loop
	Camera and scene runnables
	Overriding object coordinates provider
	More examples

	Running and debugging scripts

	Frames and screenshots
	Frame ouptut
	Frame ouptut modes

	Screenshots
	Screenshot modes

	Stereoscopic (3D) mode
	Planetarium mode
	Single-projector setup
	Spherical mirror projection
	File format

	Multi-projector setup
	MPCDI
	Gaia Sky configuration file

	Re-projection shaders

	Panorama mode
	Configuration
	Creating panorama images
	Injecting panorama metadata to 360 images

	Creating spherical (360) videos

	Orthosphere view mode
	Eclipse representation
	Bounding shapes
	Adding bounding shapes
	Removing shape objects

	External views
	Connecting Gaia Sky instances
	Configuration
	Configuration: replica instance(s)
	Configuration: primary instance
	Caveats

	REST API
	Using the REST API
	Debug

	Capturing videos
	Frame output system + ffmpeg
	OpenGL/Screen recorders
	Linux
	Windows

	SAMP integration
	Implemented features
	Unimplemented features

	Procedural planetary surfaces
	Surface generation process
	Seamless (tilable) noise
	Noise parametrization

	Cloud generation process
	Descriptor files
	Randomize all
	Surface description
	Color look-up table
	Noise parameters

	Cloud description
	Atmospheric parameters description

	Procedural generation at runtime

	System logs
	Session log
	Crash reports

	Advanced topics
	The configuration file
	Program settings
	Controls settings
	Graphics settings
	Data settings
	Scene settings
	Post-processing settings
	Proxy settings

	Proxy configuration
	Use system proxy
	Direct configuration
	HTTP
	HTTPS
	SOCKS
	FTP

	Performance
	Maximum heap memory
	Heap memory on Linux
	Heap memory on Windows
	Heap memory on macOS
	Heap memory when running from source

	Graphics performance
	CPU performance
	Multithreading
	Limiting FPS
	Draw distance (levels of detail)
	Smooth transitions

	Graphics performance
	Graphics quality setting
	Dynamic resolution
	Star brightness
	Star groups
	Billboards
	Labels
	Velocity vectors

	Model detail
	Bloom, lens flare and light glow
	Antialiasing

	Internal reference system
	Description
	Internal units

	Data format
	Where are the data files defined?
	$data/[dataset-name]/dataset.json example
	default-data/dataset.json example file

	Data loaders
	Catalog formats
	Star catalogs
	Regular star catalogs
	Level-of-detail star catalogs

	Particle catalogs

	JSON data format
	Data morphology
	Objects vs Updates
	Basic attributes
	Proper motions
	Magnitudes
	Labels
	Coordinates and ephemerides
	Orbit coordinates
	Static coordinates
	VSOP87
	VSOP2000
	Chebyshev polynomials
	Heliotropic orbits
	Moon AA coordinates
	Pluto coordinates
	Python scripting coordinates

	Model objects
	Orientation
	Model
	Clouds
	Atmospheric scattering parameters

	Mesh objects
	Orbits
	Grids and other special objects
	Affine transformations
	Reference system transformations

	Creating your own catalog loaders
	Loading data using scripts

	STIL data loader
	Object IDs
	Object names
	Positions
	Proper motions and radial velocities
	Magnitudes
	Colors
	Variability
	Other columns

	Star catalog formats
	Binary format specification
	Metadata file
	Version 0
	Version 1

	Star particle files
	Version 0
	Version 1
	Version 2

	LOD catalog processing
	Catalogs
	Distances
	Magnitude/color corrections

	Particle catalog formats
	Archetypes
	Components
	Base
	Body
	GraphNode
	Coordinates
	Orientation
	Celestial
	Magnitude
	ProperMotion
	SolidAngle
	Shape
	Trajectory
	ModelScaffolding
	Model
	Atmosphere
	Cloud
	RenderFlags
	MotorEngine
	RefSysTransform
	AffineTransformations
	Fade
	DatasetDescription
	Label
	RenderType
	BillboardSet
	Title
	Axis
	LocationMark
	Constel
	Boundaries
	ParticleSet
	StarSet
	ParticleExtra
	Mesh
	Focus
	Raymarching

	Star rendering
	Pseudo-size determination
	Star shader and rendering

	Defining an extrasolar system
	Initial set up
	Defining the objects
	Stars
	Planets

	Cubemaps
	Virtual Textures
	Overview
	Creating Virtual Texture Datasets
	Preparing the tiles
	Tools
	Limitations

	Mesh warping

	Gaia Sky VR
	System requirements
	Set-up
	Windows
	Linux

	Downloading datasets
	Controls
	Caveats
	Common problems

	Additional resources
	Video tutorials
	Presentations
	Workshop notes
	Outreach tutorial (MWGaiaDN 2024)
	Before starting…
	Welcome window
	Dataset manager
	Basic controls
	Movement
	Selection

	The User Interface
	Control panes
	Quick info bar
	Debug panel
	Time controls

	Camera modes
	Special render modes
	Component visibility
	Velocity vectors

	Visual settings
	External datasets
	Working with datasets

	External information
	Scripting
	Camera paths
	Keyframe system

	Frame output mode
	Conclusion

	Scripting workshop (DPAC 2023)
	General tutorial (DPAC 2021)
	Video production tutorial (DPAC 2020)

	Frequently Asked Questions
	Q: What is the base-data package?
	Q: Why do you have two different download pages?
	Q: Why so many Gaia-DR catalogs?
	Q: Gaia Sky crashes at start-up, what to do?
	Q: I’m running out of memory, what to do?
	Q: I can’t see the elevation data on Earth or other planets!
	Q: What is the internal reference system used in Gaia Sky?
	Q: Can I contribute?
	Q: I like Gaia Sky so much, can I donate to contribute to the project?

	Changelog
	About
	Contact
	Author
	Acknowledgements
	Stats

